File size: 1,760 Bytes
9248464 6dd3e58 9248464 6dd3e58 affac97 9248464 14b8a20 9248464 14b8a20 6b119e8 02347de d575138 02347de 9248464 6dd3e58 affac97 9248464 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import shutil
import glob
import os
import numpy as np
import pandas as pd
from fastapi import FastAPI,UploadFile,File
from pydantic import BaseModel,Field
from app.modelling import train
from app.inference import predict
dataset=None
class Item(BaseModel):
Torque:float=Field(gt=0,default=24.25)
Hydraulic_Pressure:float=Field(gt=0,default=121.86)
Cutting:float=Field(gt=0,default=2.89)
Coolant_Pressure:float=Field(gt=0,default=6.96)
Spindle_Speed:float=Field(gt=0,default=20504.0)
Coolant_Temperature:float=Field(gt=0,default=14.9)
app=FastAPI()
@app.get("/")
def home():
return {"message":"Hello World!"}
"""
@app.post("/upload/")
def upload_csv(uploaded_file:UploadFile=File(...)):
cwd=os.getcwd()
path=os.path.join(cwd,"app","dataset.csv")
with open(path, 'w+b') as file:
shutil.copyfileobj(uploaded_file.file, file)
return {'file': uploaded_file.filename,
'content': uploaded_file.content_type,
'path': path}
"""
@app.post("/upload/")
def upload_csv(file:UploadFile=File(...)):
global dataset
dataset=pd.read_csv(file.file)
file.file.close()
return {"filename": file.filename}
@app.post("/train/")
def training():
if dataset is not None:
results=train(dataset)
return results
else:
return {"message":"First Upload Dataset"}
@app.post("/predict/")
def prediction(item:Item):
cwd=os.getcwd()
path=os.path.join(cwd,"app","model.pkl")
if os.path.exists(path):
arr=[[item.Torque,item.Hydraulic_Pressure,item.Cutting,item.Coolant_Pressure,item.Spindle_Speed,item.Coolant_Temperature]]
results=predict(arr)
return results
else:
return {"message":"First Train Model"}
|