File size: 2,863 Bytes
523086c cba7086 523086c cba7086 9248464 6f6646e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
title: Manufacturing Downtime Prediction API
emoji: π
colorFrom: green
colorTo: red
sdk: docker
pinned: false
license: apache-2.0
---
# Manufacturing Downtime Prediction
## Project Links:
* **[Deployed FastAPI](https://omdena-jakarta-traffic-system.streamlit.app/)**
* **[Detailed Kaggle Notebook](https://www.kaggle.com/code/sudhanshu2198/machine-defect-prediction)**
## Background
- The Manufacturing Downtime Dataset contains information about the operational parameters of various machines and their downtime records.
- Analyze machine performance, predict potential failures, and develop predictive maintenance strategies based on operational parameters.
- Features
- Torque(Nm)
- Hydraulic_Pressure(bar)
- Cutting(kN)
- Coolant_Pressure(bar)
- Spindle_Speed(RPM)
- Coolant_Temperature
- Target
- Downtime
## Directory Tree
```bash
βββ app
β βββ __init__.py
β βββ main.py
β βββ modelling.py
β βββ inference.py
βββ README.md
βββ requirements.txt
βββ Manufacturing_Downtime_Dataset.csv
βββ .gitignore
```
## Run Webapp Locally
Clone the project
```bash
git clone https://github.com/sudhanshu2198/Manufacturing-Downtime-Prediction-API
```
Change to project directory
```bash
cd Manufacturing-Downtime-Prediction-API
```
Create Virtaul Environment and install dependencies
```bash
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
```
Run Locally
```bash
uvicorn app.main:app
```
cURL Commands
1) Upload
```bash
Request
curl -X 'POST' \
'http://127.0.0.1:8000/upload/' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'uploaded_file=@Manufacturing_Downtime_Dataset.csv;type=text/csv'
Response
{
"file": "Manufacturing_Downtime_Dataset.csv",
"content": "text/csv",
"path": "dataset.csv"
}
```
2) Train
```bash
Request
curl -X 'POST' \
'http://127.0.0.1:8000/train/' \
-H 'accept: application/json' \
-d ''
Response
{
"Accuracy": 0.9897750511247444,
"F1_Score": 0.9896049896049895
}
```
3) Predict
```bash
Request 1
curl -X 'POST' \
'http://127.0.0.1:8000/predict/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"Torque": 28.38124,
"Hydraulic_Pressure": 131.265854,
"Cutting": 2.01,
"Coolant_Pressure": 4.982836,
"Spindle_Speed": 20033.0,
"Coolant_Temperature": 20.1
}'
Response 1
{
"Downtime": "No",
"Confidence": 0.87
}
Request 2
curl -X 'POST' \
'http://127.0.0.1:8000/predict/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"Torque": 25.614444,
"Hydraulic_Pressure": 98.7,
"Cutting": 3.49,
"Coolant_Pressure": 6.839413,
"Spindle_Speed": 18638.0,
"Coolant_Temperature": 24.4
}'
Response 2
{
"Downtime": "Yes",
"Confidence": 0.98
}
``` |