Srastog's picture
Update app/main.py
589298f verified
raw
history blame
1.59 kB
import shutil
import glob
import os
import numpy as np
import pandas as pd
from fastapi import FastAPI,UploadFile,File
from pydantic import BaseModel,Field
from app.modelling import train
from app.inference import predict
dataset=None
trained_model=None
encoder=None
transform=None
step=0
class Item(BaseModel):
Torque:float=Field(gt=0,default=24.25)
Hydraulic_Pressure:float=Field(gt=0,default=121.86)
Cutting:float=Field(gt=0,default=2.89)
Coolant_Pressure:float=Field(gt=0,default=6.96)
Spindle_Speed:float=Field(gt=0,default=20504.0)
Coolant_Temperature:float=Field(gt=0,default=14.9)
app=FastAPI()
@app.get("/")
def home():
return {"message":"Hello World!"}
@app.post("/upload/")
def upload_csv(file:UploadFile=File(...)):
step=1
dataset=pd.read_csv(file.file)
file.file.close()
return {"filename": file.filename}
@app.post("/train/")
def training():
if step>0:
step=2
results=train(dataset)
trained_model=results["model"]
encoder=results["encoder"]
transform=results["transform"]
return {"Accuracy":results["Accuracy"],
"F1_Score":results["F1_Score"]}
else:
return {"message":"First Upload Dataset"}
@app.post("/predict/")
def prediction(item:Item):
if step>1:
arr=[[item.Torque,item.Hydraulic_Pressure,item.Cutting,item.Coolant_Pressure,item.Spindle_Speed,item.Coolant_Temperature]]
results=predict(trained_model,encoder,transform,arr)
return results
else:
return {"message":"First Train Model"}