--- title: Manufacturing Downtime Prediction API emoji: 📉 colorFrom: green colorTo: red sdk: docker pinned: false license: apache-2.0 --- # Manufacturing Downtime Prediction ## Project Links: * **[Deployed FastAPI](https://omdena-jakarta-traffic-system.streamlit.app/)** * **[Detailed Kaggle Notebook](https://www.kaggle.com/code/sudhanshu2198/machine-defect-prediction)** ## Background - The Manufacturing Downtime Dataset contains information about the operational parameters of various machines and their downtime records. - Analyze machine performance, predict potential failures, and develop predictive maintenance strategies based on operational parameters. - Features - Torque(Nm) - Hydraulic_Pressure(bar) - Cutting(kN) - Coolant_Pressure(bar) - Spindle_Speed(RPM) - Coolant_Temperature - Target - Downtime ## Directory Tree ```bash ├── app │ ├── __init__.py │ ├── main.py │ ├── modelling.py │ └── inference.py ├── README.md ├── requirements.txt ├── Manufacturing_Downtime_Dataset.csv └── .gitignore ``` ## Run Webapp Locally Clone the project ```bash git clone https://github.com/sudhanshu2198/Manufacturing-Downtime-Prediction-API ``` Change to project directory ```bash cd Manufacturing-Downtime-Prediction-API ``` Create Virtaul Environment and install dependencies ```bash python3 -m venv venv source venv/bin/activate pip install -r requirements.txt ``` Run Locally ```bash uvicorn app.main:app ``` cURL Commands 1) Upload ```bash Request curl -X 'POST' \ 'http://127.0.0.1:8000/upload/' \ -H 'accept: application/json' \ -H 'Content-Type: multipart/form-data' \ -F 'uploaded_file=@Manufacturing_Downtime_Dataset.csv;type=text/csv' Response { "file": "Manufacturing_Downtime_Dataset.csv", "content": "text/csv", "path": "dataset.csv" } ``` 2) Train ```bash Request curl -X 'POST' \ 'http://127.0.0.1:8000/train/' \ -H 'accept: application/json' \ -d '' Response { "Accuracy": 0.9897750511247444, "F1_Score": 0.9896049896049895 } ``` 3) Predict ```bash Request 1 curl -X 'POST' \ 'http://127.0.0.1:8000/predict/' \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "Torque": 28.38124, "Hydraulic_Pressure": 131.265854, "Cutting": 2.01, "Coolant_Pressure": 4.982836, "Spindle_Speed": 20033.0, "Coolant_Temperature": 20.1 }' Response 1 { "Downtime": "No", "Confidence": 0.87 } Request 2 curl -X 'POST' \ 'http://127.0.0.1:8000/predict/' \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "Torque": 25.614444, "Hydraulic_Pressure": 98.7, "Cutting": 3.49, "Coolant_Pressure": 6.839413, "Spindle_Speed": 18638.0, "Coolant_Temperature": 24.4 }' Response 2 { "Downtime": "Yes", "Confidence": 0.98 } ```