Spaces:
Sleeping
Sleeping
File size: 9,536 Bytes
c82bebf b613afc c82bebf b7bcf4d c82bebf b613afc c82bebf 9a7b713 c82bebf b7bcf4d c82bebf e0e165f 7b7fed2 ce3c9a5 23239b5 c82bebf 1f66b97 c82bebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import numpy as np
import pandas as pd
import re
import os
import cloudpickle
from transformers import (DebertaTokenizerFast,
TFAutoModelForTokenClassification,
BartTokenizerFast,
TFAutoModelForSeq2SeqLM)
import tensorflow as tf
import spacy
import streamlit as st
class NERLabelEncoder:
'''
Label Encoder to encode and decode the entity labels
'''
def __init__(self):
self.label_mapping = {'O': 0,
'B-geo': 1,
'I-geo': 2,
'B-gpe': 3,
'I-gpe': 4,
'B-per': 5,
'I-per': 6,
'B-org': 7,
'I-org': 8,
'B-tim': 9,
'I-tim': 10,
'B-art': 11,
'I-art': 12,
'B-nat': 13,
'I-nat': 14,
'B-eve': 15,
'I-eve': 16,
'[CLS]': -100,
'[SEP]': -100}
self.inverse_label_mapping = {}
def fit(self):
self.inverse_label_mapping = {value: key for key, value in self.label_mapping.items()}
return self
def transform(self, x: pd.Series):
x = x.map(self.label_mapping)
return x
def inverse_transform(self, x: pd.Series):
x = x.map(self.inverse_label_mapping)
return x
############ NER MODEL & VARS INITIALIZATION START ####################
NER_CHECKPOINT = "microsoft/deberta-base"
NER_N_TOKENS = 50
NER_N_LABELS = 18
NER_COLOR_MAP = {'GEO': '#DFFF00', 'GPE': '#FFBF00', 'PER': '#9FE2BF',
'ORG': '#40E0D0', 'TIM': '#CCCCFF', 'ART': '#FFC0CB', 'NAT': '#FFE4B5', 'EVE': '#DCDCDC'}
@st.cache_resource
def load_ner_models():
ner_model = TFAutoModelForTokenClassification.from_pretrained(NER_CHECKPOINT, num_labels=NER_N_LABELS, attention_probs_dropout_prob=0.4, hidden_dropout_prob=0.4)
ner_model.load_weights(os.path.join("models", "general_ner_deberta_weights.h5"), by_name=True)
ner_label_encoder = NERLabelEncoder()
ner_label_encoder.fit()
ner_tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True)
nlp = spacy.load(os.path.join('.', 'en_core_web_sm-3.6.0'))
print('Loaded NER models')
return ner_model, ner_label_encoder, ner_tokenizer, nlp
ner_model, ner_label_encoder, ner_tokenizer, nlp = load_ner_models()
############ NER MODEL & VARS INITIALIZATION END ####################
############ NER LOGIC START ####################
def softmax(x):
return tf.exp(x) / tf.math.reduce_sum(tf.exp(x))
def ner_process_output(res):
'''
Function to concatenate sub-word tokens, labels and
compute mean prediction probability of tokens
'''
d = {}
result = []
pred_prob = []
res.append(['-', 'B-b', 0])
for n, i in enumerate(res):
try:
split = i[1].split('-')
token = i[0]
token_prob = i[2]
prefix, suffix = split
if prefix == 'B':
if len(d) != 0:
result.append([(re.sub(r"[^\x00-\x7F]+", '', token.replace("Ġ", " ").strip()), label, np.mean(pred_prob))
for label, token in d.items()][0])
d = {}
pred_prob = []
pred_prob.append(token_prob)
d[suffix] = token
else:
d[suffix] = d[suffix] + token
pred_prob.append(token_prob)
except:
continue
return result
def ner_inference(txt):
'''
Function that returns model prediction and prediction probabitliy
'''
test_data = [txt]
# tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True)
tokens = ner_tokenizer.tokenize(txt)
tokenized_data = ner_tokenizer(test_data, is_split_into_words=True, max_length=NER_N_TOKENS,
truncation=True, padding="max_length")
token_idx_to_consider = tokenized_data.word_ids()
token_idx_to_consider = [i for i in range(len(token_idx_to_consider)) if token_idx_to_consider[i] is not None]
input_ = [tokenized_data['input_ids'], tokenized_data['attention_mask']]
pred_logits = ner_model.predict(input_, verbose=0).logits[0]
pred_prob = tf.map_fn(softmax, pred_logits)
pred_idx = tf.argmax(pred_prob, axis=-1).numpy()
pred_idx = pred_idx[token_idx_to_consider]
pred_prob = tf.math.reduce_max(pred_prob, axis=-1).numpy()
pred_prob = np.round(pred_prob[token_idx_to_consider], 3)
pred_labels = ner_label_encoder.inverse_transform(pd.Series(pred_idx))
result = [[token, label, prob] for token, label,
prob in zip(tokens, pred_labels, pred_prob) if label.find('-') >= 0]
output = ner_process_output(result)
return output
def ner_inference_long_text(txt):
entities = []
doc = nlp(txt)
for sent in doc.sents:
entities.extend(ner_inference(sent.text))
return entities
def get_ner_text(article_txt, ner_result):
res_txt = ''
start = 0
prev_start = 0
for i in ner_result:
try:
span = next(re.finditer(fr'{i[0]}', article_txt)).span()
start = span[0]
end = span[1]
res_txt += article_txt[prev_start:start]
repl_str = f'''<span style="background-color:{NER_COLOR_MAP[i[1]]}; border-radius: 3px">{article_txt[start:end].strip()}
<span style="font-size:10px; font-weight:bold; display:inline-block; vertical-align: middle;">
{i[1]} ({str(np.round(i[2], 3))})</span></span>'''
res_txt += article_txt[start:end].replace(article_txt[start:end], repl_str)
prev_start = 0
article_txt = article_txt[end:]
except:
continue
res_txt += article_txt
return res_txt
############ NER LOGIC END ####################
############ SUMMARIZATION MODEL & VARS INITIALIZATION START ####################
SUMM_CHECKPOINT = "facebook/bart-base"
SUMM_INPUT_N_TOKENS = 400
SUMM_TARGET_N_TOKENS = 100
@st.cache_resource
def load_summarizer_models():
summ_tokenizer = BartTokenizerFast.from_pretrained(SUMM_CHECKPOINT)
summ_model = TFAutoModelForSeq2SeqLM.from_pretrained(SUMM_CHECKPOINT)
summ_model.load_weights(os.path.join("models", "bart_en_summarizer.h5"), by_name=True)
print('Loaded summarizer models')
return summ_tokenizer, summ_model
summ_tokenizer, summ_model = load_summarizer_models()
def summ_preprocess(txt):
txt = re.sub(r'^By \. [\w\s]+ \. ', ' ', txt) # By . Ellie Zolfagharifard .
txt = re.sub(r'\d{1,2}\:\d\d [a-zA-Z]{3}', ' ', txt) # 10:30 EST
txt = re.sub(r'\d{1,2} [a-zA-Z]+ \d{4}', ' ', txt) # 10 November 1990
txt = txt.replace('PUBLISHED:', ' ')
txt = txt.replace('UPDATED', ' ')
txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after
txt = txt.replace(' : ', ' ')
txt = txt.replace('(CNN)', ' ')
txt = txt.replace('--', ' ')
txt = re.sub(r'^\s*[\,\.\:\'\;\|]', ' ', txt) # remove puncts at beginning of sent
txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after
txt = re.sub(r'\n+',' ', txt)
txt = " ".join(txt.split())
return txt
def summ_inference_tokenize(input_: list, n_tokens: int):
tokenized_data = summ_tokenizer(text=input_, max_length=SUMM_TARGET_N_TOKENS, truncation=True, padding="max_length", return_tensors="tf")
return summ_tokenizer, tokenized_data
def summ_inference(txt: str):
txt = summ_preprocess(txt)
test_data = [txt]
inference_tokenizer, tokenized_data = summ_inference_tokenize(input_=test_data, n_tokens=SUMM_INPUT_N_TOKENS)
pred = summ_model.generate(**tokenized_data, max_new_tokens=SUMM_TARGET_N_TOKENS)
result = inference_tokenizer.decode(pred[0])
result = re.sub("<.*?>", "", result).strip()
return result
############ SUMMARIZATION MODEL & VARS INITIALIZATION END ####################
############## ENTRY POINT START #######################
def main():
st.markdown('''<h3>News Summarizer and NER</h3>
<p><a href="https://huggingface.co/spaces/ksvmuralidhar/news-summarizer-ner/blob/main/README.md#new-summarization--ner" target="_blank">README</a></p>''', unsafe_allow_html=True)
article_txt = st.text_area("Paste the text of a news article (the longer, the better):", "", height=200)
article_txt = re.sub(r'\n+',' ', article_txt)
if st.button("Submit"):
ner_result = [[ent, label.upper(), np.round(prob, 3)]
for ent, label, prob in ner_inference_long_text(article_txt)]
ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence'])
summ_result = summ_inference(article_txt)
ner_txt = get_ner_text(article_txt, ner_result).replace('$', '\$')
st.markdown(f"<h4>SUMMARY:</h4>{summ_result}<h4>ENTITIES:</h4>", unsafe_allow_html=True)
st.markdown(f"{ner_txt}", unsafe_allow_html=True)
st.dataframe(ner_df, use_container_width=True)
############## ENTRY POINT END #######################
if __name__ == "__main__":
main() |