import streamlit as st import tensorflow as tf from PIL import Image import img_classification import numpy as np st.set_page_config(page_title="Food Vision", page_icon="🍔") st.title("Food Vision 🍔📷") st.header("Identify what's in your food photos!") st.sidebar.title("What actually is this?") st.sidebar.write(""" FoodVision is an end-to-end **CNN Image Classification Model** which identifies the food in your image. It can identify over 100 different food classes And also this model is trained using Transfer Learning (Efficientnet-B0) """) st.sidebar.markdown("Created by **Sravanth**") uploaded_file = st.file_uploader("Upload a food image", type=["jpeg","jpg","png"]) if uploaded_file is not None: img = uploaded_file.read() st.image(img, caption='Uploaded Image.', use_column_width=True) st.write("") #img = tf.io.read_file(uploaded_file) img = tf.io.decode_image(img, channels=3) img = tf.image.resize(img, [224, 224]) st.write("Classifying...") label = img_classification.classify(img) label = label.capitalize() st.success(f'Prediction : {label}\n')