File size: 6,111 Bytes
cc5d590
97bf913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649caa0
 
cc5d590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e48ef1a
cc5d590
 
 
e48ef1a
cc5d590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649caa0
a35a697
649caa0
 
 
 
a35a697
649caa0
 
 
 
 
 
 
 
 
 
 
 
 
a35a697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649caa0
 
a35a697
649caa0
 
 
 
 
a35a697
 
 
649caa0
a35a697
 
 
649caa0
a35a697
649caa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
'''
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()

    

import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph

# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')

# Define the agent functions
def agent1(query):
    return f"Agent 1: {query}"

def agent2(query):
    return f"Agent 2: {query}"

# Define the states
s1 = StateGraph("s1")
s2 = StateGraph("s2")

# Define the LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(input_variables=["query"], template="You are in state s1. {{query}}"))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(input_variables=["query"], template="You are in state s2. {{query}}"))

# Define the transition functions
def transition_s1(query):
    output = chain1.invoke(input=query)
    return agent1(output), s2

def transition_s2(query):
    output = chain2.invoke(input=query)
    return agent2(output), s1

# Define the respond function
def respond(input, history, current_state):
    if current_state == s1:
        response, next_state = transition_s1(input)
    elif current_state == s2:
        response, next_state = transition_s2(input)
    history.append((input, response))
    return history, next_state

# Create the Gradio interface
current_state = s1  # Define current_state here

with gr.Blocks() as demo:
    gr.Markdown("# Chatbot Interface")
    chatbot_interface = gr.Chatbot()
    user_input = gr.Textbox(label="Your Message", placeholder="Type something...")
    submit_btn = gr.Button("Send")

    # Define the behavior of the submit button
    def submit_click(input, history):
        global current_state  # Use global instead of nonlocal
        history, current_state = respond(input, history, current_state)
        return history
    
    submit_btn.click(
        fn=submit_click,
        inputs=[user_input, chatbot_interface],
        outputs=chatbot_interface
    )

# Launch the Gradio application
demo.launch()
'''

import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph

# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')

# Define the agent functions
def agent1(response):
    return f"Agent 1: {response}"

def agent2(response):
    return f"Agent 2: {response}"

# Define the prompts and LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(
    input_variables=["query"], 
    template="You are in state s1. {{query}}"
))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(
    input_variables=["query"], 
    template="You are in state s2. {{query}}"
))

# Create a state graph for managing the chatbot's states
graph = StateGraph()

# Create states and add them to the graph
state1 = graph.add_state("s1")  # State for the first agent
state2 = graph.add_state("s2")  # State for the second agent

# Define transitions
graph.add_edge(state1, state2, "next")  # Transition from s1 to s2
graph.add_edge(state2, state1, "back")   # Transition from s2 to s1

# Initialize the current state
current_state = state1

def handle_input(query):
    global current_state
    output = ''
    
    # Process user input based on current state
    if current_state == state1:
        output = chain1.invoke(input=query)  # Invoke chain1 with user input
        response = agent1(output)  # Process output through Agent 1
        current_state = state2  # Transition to state s2
    elif current_state == state2:
        output = chain2.invoke(input=query)  # Invoke chain2 with user input
        response = agent2(output)  # Process output through Agent 2
        current_state = state1  # Transition back to state s1

    return response

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chatbot Interface")
    chatbot_interface = gr.Chatbot()
    user_input = gr.Textbox(label="Your Message", placeholder="Type something here...")
    submit_btn = gr.Button("Send")

    # Define the behavior of the submit button
    submit_btn.click(
        fn=lambda input_text: handle_input(input_text),  # Handle user input
        inputs=[user_input],
        outputs=chatbot_interface
    )

# Launch the Gradio application
demo.launch()