File size: 6,111 Bytes
cc5d590 97bf913 649caa0 cc5d590 e48ef1a cc5d590 e48ef1a cc5d590 649caa0 a35a697 649caa0 a35a697 649caa0 a35a697 649caa0 a35a697 649caa0 a35a697 649caa0 a35a697 649caa0 a35a697 649caa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
'''
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph
# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')
# Define the agent functions
def agent1(query):
return f"Agent 1: {query}"
def agent2(query):
return f"Agent 2: {query}"
# Define the states
s1 = StateGraph("s1")
s2 = StateGraph("s2")
# Define the LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(input_variables=["query"], template="You are in state s1. {{query}}"))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(input_variables=["query"], template="You are in state s2. {{query}}"))
# Define the transition functions
def transition_s1(query):
output = chain1.invoke(input=query)
return agent1(output), s2
def transition_s2(query):
output = chain2.invoke(input=query)
return agent2(output), s1
# Define the respond function
def respond(input, history, current_state):
if current_state == s1:
response, next_state = transition_s1(input)
elif current_state == s2:
response, next_state = transition_s2(input)
history.append((input, response))
return history, next_state
# Create the Gradio interface
current_state = s1 # Define current_state here
with gr.Blocks() as demo:
gr.Markdown("# Chatbot Interface")
chatbot_interface = gr.Chatbot()
user_input = gr.Textbox(label="Your Message", placeholder="Type something...")
submit_btn = gr.Button("Send")
# Define the behavior of the submit button
def submit_click(input, history):
global current_state # Use global instead of nonlocal
history, current_state = respond(input, history, current_state)
return history
submit_btn.click(
fn=submit_click,
inputs=[user_input, chatbot_interface],
outputs=chatbot_interface
)
# Launch the Gradio application
demo.launch()
'''
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph
# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')
# Define the agent functions
def agent1(response):
return f"Agent 1: {response}"
def agent2(response):
return f"Agent 2: {response}"
# Define the prompts and LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(
input_variables=["query"],
template="You are in state s1. {{query}}"
))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(
input_variables=["query"],
template="You are in state s2. {{query}}"
))
# Create a state graph for managing the chatbot's states
graph = StateGraph()
# Create states and add them to the graph
state1 = graph.add_state("s1") # State for the first agent
state2 = graph.add_state("s2") # State for the second agent
# Define transitions
graph.add_edge(state1, state2, "next") # Transition from s1 to s2
graph.add_edge(state2, state1, "back") # Transition from s2 to s1
# Initialize the current state
current_state = state1
def handle_input(query):
global current_state
output = ''
# Process user input based on current state
if current_state == state1:
output = chain1.invoke(input=query) # Invoke chain1 with user input
response = agent1(output) # Process output through Agent 1
current_state = state2 # Transition to state s2
elif current_state == state2:
output = chain2.invoke(input=query) # Invoke chain2 with user input
response = agent2(output) # Process output through Agent 2
current_state = state1 # Transition back to state s1
return response
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chatbot Interface")
chatbot_interface = gr.Chatbot()
user_input = gr.Textbox(label="Your Message", placeholder="Type something here...")
submit_btn = gr.Button("Send")
# Define the behavior of the submit button
submit_btn.click(
fn=lambda input_text: handle_input(input_text), # Handle user input
inputs=[user_input],
outputs=chatbot_interface
)
# Launch the Gradio application
demo.launch()
|