File size: 20,315 Bytes
d7f529a
 
62f3c8b
70059f9
 
 
 
 
 
 
 
 
 
 
 
 
 
62f3c8b
 
 
2a93a16
62f3c8b
2a93a16
 
 
 
 
62f3c8b
 
 
 
 
2a93a16
 
 
62f3c8b
 
 
 
2a93a16
62f3c8b
 
 
 
 
 
 
23474ee
97bf913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649caa0
62f3c8b
a35a697
649caa0
 
 
 
87b0e6b
9d17c9a
 
 
 
 
 
 
 
 
649caa0
 
 
 
 
 
 
 
 
 
 
 
 
a35a697
 
 
 
 
 
 
 
 
8569432
 
9d17c9a
8569432
 
9d17c9a
 
a35a697
 
9d17c9a
 
 
649caa0
 
9d17c9a
649caa0
 
 
 
 
a35a697
9d17c9a
a35a697
649caa0
9d17c9a
 
a35a697
649caa0
9d17c9a
649caa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fdd98
87c40f0
c0fdd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4be6fd3
 
c0fdd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23474ee
d7f529a
 
3879be6
9b99a81
 
 
 
 
87c40f0
d7f529a
 
 
 
 
 
 
 
 
 
 
 
 
 
87c40f0
9b99a81
 
 
87c40f0
 
 
 
9b99a81
87c40f0
 
 
 
9b99a81
 
87c40f0
 
 
9b99a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c40f0
9b99a81
 
 
 
87c40f0
9b99a81
87c40f0
 
 
 
9b99a81
 
 
87c40f0
9b99a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3879be6
 
 
9b99a81
3879be6
 
9b99a81
3879be6
9b99a81
 
87c40f0
9b99a81
 
 
87c40f0
9b99a81
 
 
 
87c40f0
 
9b99a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6939fe
9b99a81
 
 
 
 
 
 
 
 
 
 
 
 
87c40f0
9b99a81
 
 
87c40f0
9b99a81
 
87c40f0
 
 
9b99a81
 
87c40f0
 
 
9b99a81
 
 
 
 
87c40f0
 
 
9b99a81
 
 
 
 
3879be6
 
 
9b99a81
3879be6
 
 
 
ed68491
9b99a81
87c40f0
 
 
 
 
 
9b99a81
87c40f0
 
 
 
 
 
9b99a81
87c40f0
9c379a0
c0fdd98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
'''

import gradio as gr
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
    import spaces
else:
    class spaces:
        @staticmethod
        def GPU(func):
            def wrapper(*args, **kwargs):
                return func(*args, **kwargs)
            return wrapper

@spaces.GPU
def fake_gpu():
  pass

# Define a function to respond to user input
def respond(message, history):
    # Create a response based on the user's message
    response = "You said: " + message
    
    # Append the message and response to history
    history.append({"role": "user", "content": message})
    history.append({"role": "assistant", "content": response})
    
    return history

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chatbot Interface")
    
    # Initialize chatbot with the new message type
    chatbot_interface = gr.Chatbot(type='messages')  # Specify type='messages'
    user_input = gr.Textbox(label="Your Message", placeholder="Type something...")
    submit_btn = gr.Button("Send")
    
    # Define the behavior of the submit button
    submit_btn.click(fn=respond, inputs=[user_input, chatbot_interface], outputs=chatbot_interface)

# Launch the Gradio application
demo.launch()





import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()



import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph,END,START
from typing import TypedDict

class InputState(TypedDict):
    string_var :str
    numeric_var :int 
    
def changeState(input: InputState):
    print(f"Current value: {input}")
    return input

# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')

# Define the agent functions
def agent1(response):
    return f"Agent 1: {response}"

def agent2(response):
    return f"Agent 2: {response}"

# Define the prompts and LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(
    input_variables=["query"], 
    template="You are in state s1. {{query}}"
))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(
    input_variables=["query"], 
    template="You are in state s2. {{query}}"
))


# Create a state graph with required schemas for inputs and outputs
graph = StateGraph(InputState)

# Add states to the graph
graph.add_node("s1",changeState)
graph.add_node("s2",changeState)

# Define transitions
graph.add_edge(START, "s1")  # Transition from s1 to s2
graph.add_edge("s1", "s2")   # Transition from s2 to s1
graph.add_edge("s2", END)

# Initialize the current state
current_state = "s1"

def handle_input(query):
    global current_state
    output = ''
    
    # Process user input based on current state
    if current_state == "s1":
        output = chain1.invoke(input=query)  # Invoke chain1 with user input
        response = agent1(output)  # Process output through Agent 1
        current_state = "s2"  # Transition to state s2
    elif current_state == "s2":
        output = chain2.invoke(input=query)  # Invoke chain2 with user input
        response = agent2(output)  # Process output through Agent 2
        current_state = "s1"  # Transition back to state s1

    return response

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chatbot Interface")
    chatbot_interface = gr.Chatbot()
    user_input = gr.Textbox(label="Your Message", placeholder="Type something here...")
    submit_btn = gr.Button("Send")

    # Define the behavior of the submit button
    submit_btn.click(
        fn=lambda input_text: handle_input(input_text),  # Handle user input
        inputs=[user_input],
        outputs=chatbot_interface
    )

# Launch the Gradio application
demo.launch()
'''
'''
from typing import Annotated, Sequence, TypedDict
import operator
import functools

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
#name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
name="Qwen/Qwen2.5-7B-Instruct-1M"

tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=500,  # text to generate for outputs
)
print ("pipeline is created")

# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)

# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members

# Supervisor prompt
system_prompt = (
    "You are a supervisor tasked with managing a conversation between the following workers: {members}."
    " Given the following user request, respond with the workers to act next. Each worker will perform a task"
    " and respond with their results and status. When all workers are finished, respond with FINISH."
)

# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        ("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
    ]
).partial(options=str(options), members=", ".join(members))

print ("Prompt Template created")

# Supervisor routing logic
def route_tool_response(llm_response):
    """
    Parse the LLM response to determine the next step based on routing logic.
    """
    if "FINISH" in llm_response:
        return "FINISH"
    for member in members:
        if member in llm_response:
            return member
    return "Unknown"

def supervisor_chain(state):
    """
    Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
    """
    messages = state.get("messages", [])
    print(f"[TRACE] Supervisor received messages: {messages}")  # Trace input messages
    user_prompt = prompt.format(messages=messages)

    try:
        llm_response = pipe(user_prompt, max_new_tokens=500)[0]["generated_text"]
        print(f"[TRACE] LLM Response: {llm_response}")  # Trace LLM interaction
    except Exception as e:
        raise RuntimeError(f"LLM processing error: {e}")

    next_action = route_tool_response(llm_response)
    print(f"[TRACE] Supervisor deciding next action: {next_action}")  # Trace state changes
    return {"next": next_action}

# AgentState definition
class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()

# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
    llm=llm,
    tools=[tavily_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You are a web researcher."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)

print ("Created agents with their respective prompts")

code_agent = create_openai_tools_agent(
    llm=llm,
    tools=[python_repl_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You may generate safe Python code for analysis."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)


print ("create_openai_tools_agent")


# Create the workflow
workflow = StateGraph(AgentState)

# Nodes
workflow.add_node("Researcher", research_agent)  # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent)          # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)

# Add edges for workflow transitions
for member in members:
    workflow.add_edge(member, "supervisor")

workflow.add_conditional_edges(
    "supervisor",
    lambda x: x["next"],
    {k: k for k in members} | {"FINISH": END}  # Dynamically map workers to their actions
)
print("[DEBUG] Workflow edges added: supervisor -> members/FINISH based on 'next'")

# Define entry point
workflow.set_entry_point("supervisor")

print(workflow)

# Compile the workflow
graph = workflow.compile()

#from IPython.display import display, Image
#display(Image(graph.get_graph().draw_mermaid_png()))

# Properly formatted initial state
initial_state = {
    "messages": [
        #HumanMessage(content="Code hello world and print it to the terminal.")  # Correct format for user input
        HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.")  # Correct format for user input
    ]
}

# Execute the workflow
try:
    print(f"[TRACE] Initial workflow state: {initial_state}")
    result = graph.invoke(initial_state)

    print(f"[TRACE] Workflow Result: {result}")  # Final workflow result
except Exception as e:
    print(f"[ERROR] Workflow execution failed: {e}")

'''

from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from langchain_huggingface import HuggingFacePipeline
from langchain.tools import Tool
from langchain.agents import create_react_agent
from langgraph.graph import StateGraph, END
from pydantic import BaseModel
import gradio as gr
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
    import spaces
else:
    class spaces:
        @staticmethod
        def GPU(func):
            def wrapper(*args, **kwargs):
                return func(*args, **kwargs)
            return wrapper

@spaces.GPU
def fake_gpu():
  pass

# ---------------------------------------
# Step 1: Define Hugging Face LLM (Qwen/Qwen2.5-7B-Instruct-1M)
# ---------------------------------------
def create_llm():
    model_name = "Qwen/Qwen2.5-7B-Instruct-1M"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    llm_pipeline = pipeline(
        task="text-generation",
        model=model,
        tokenizer=tokenizer,
        device=-1,  # CPU mode, set to 0 for GPU
        max_new_tokens=200
    )
    return HuggingFacePipeline(pipeline=llm_pipeline)

# ---------------------------------------
# Step 2: Create Agents
# ---------------------------------------
llm = create_llm()

# Registration Agent
registration_agent = Tool(
    name="registration_check",
    description="Check if a patient is registered.",
    func=lambda details: registration_tool(details.get("visitor_name"), details.get("visitor_mobile"))
)

# Scheduling Agent
scheduling_agent = Tool(
    name="schedule_appointment",
    description="Fetch available time slots for a doctor.",
    func=lambda details: doctor_slots_tool(details.get("doctor_name"))
)

# Payment Agent
payment_agent = Tool(
    name="process_payment",
    description="Generate a payment link and confirm the payment.",
    func=lambda details: confirm_payment_tool(details.get("transaction_id"))
)

# Email Agent
email_agent = Tool(
    name="send_email",
    description="Send appointment confirmation email to the visitor.",
    func=lambda details: email_tool(
        details.get("visitor_email"),
        details.get("appointment_details"),
        details.get("hospital_location")
    )
)

# ---------------------------------------
# Step 3: Tools and Mock Functions
# ---------------------------------------
def registration_tool(visitor_name: str, visitor_mobile: str) -> bool:
    registered_visitors = [{"visitor_name": "John Doe", "visitor_mobile": "1234567890"}]
    return any(
        v["visitor_name"] == visitor_name and v["visitor_mobile"] == visitor_mobile
        for v in registered_visitors
    )

def register_visitor(visitor_name: str, visitor_mobile: str) -> bool:
    """Register a new user if not already registered."""
    return True  # Simulate successful registration

def doctor_slots_tool(doctor_name: str):
    available_slots = {
        "Dr. Smith": ["10:00 AM", "2:00 PM"],
        "Dr. Brown": ["12:00 PM"]
    }
    return available_slots.get(doctor_name, [])

def payment_tool(amount: float):
    """Generate a payment link."""
    return f"http://mock-payment-link.com/pay?amount={amount}"

def confirm_payment_tool(transaction_id: str) -> dict:
    """Confirm the payment."""
    if transaction_id == "TIMEOUT":
        return {"status": "FAILED", "reason_code": "timeout"}
    elif transaction_id == "SUCCESS":
        return {"status": "SUCCESS", "reason_code": None}
    else:
        return {"status": "FAILED", "reason_code": "other_error"}

def email_tool(visitor_email: str, appointment_details: str, hospital_location: str) -> bool:
    """Simulate sending an email to the visitor with appointment details."""
    print(f"Sending email to {visitor_email}...")
    print(f"Appointment Details: {appointment_details}")
    print(f"Hospital Location: {hospital_location}")
    # Simulate success
    return True

# ---------------------------------------
# Step 4: Define Workflow States
# ---------------------------------------
class VisitorState(BaseModel):
    visitor_name: str = ""
    visitor_mobile: str = ""
    visitor_email: str = ""
    doctor_name: str = ""
    department_name: str = ""
    selected_slot: str = ""
    messages: list = []
    payment_confirmed: bool = False
    email_sent: bool = False

def input_state(state: VisitorState):
    """InputState: Collect visitor details."""
    return {"messages": ["Please provide your name, mobile number, and email."], "next": "RegistrationState"}

def registration_state(state: VisitorState):
    """Registration State: Check and register visitor."""
    is_registered = registration_tool(state.visitor_name, state.visitor_mobile)
    if is_registered:
        return {"messages": ["Visitor is registered."], "next": "SchedulingState"}
    else:
        successfully_registered = register_visitor(state.visitor_name, state.visitor_mobile)
        if successfully_registered:
            return {"messages": ["Visitor has been successfully registered."], "next": "SchedulingState"}
        else:
            return {"messages": ["Registration failed. Please try again later."], "next": END}

def scheduling_state(state: VisitorState):
    """SchedulingState: Fetch available slots for a doctor."""
    available_slots = doctor_slots_tool(state.doctor_name)
    if available_slots:
        state.selected_slot = available_slots[0]
        return {"messages": [f"Slot selected for {state.doctor_name}: {state.selected_slot}"], "next": "PaymentState"}
    else:
        return {"messages": [f"No available slots for {state.doctor_name}."], "next": END}

def payment_state(state: VisitorState):
    """PaymentState: Generate payment link and confirm."""
    payment_link = payment_tool(500)
    state.messages.append(f"Please proceed to pay at: {payment_link}")

    # Simulate payment confirmation
    payment_response = confirm_payment_tool("SUCCESS")
    if payment_response["status"] == "SUCCESS":
        state.payment_confirmed = True
        return {"messages": ["Payment successful. Appointment is being finalized."], "next": "FinalState"}
    elif payment_response["reason_code"] == "timeout":
        return {"messages": ["Payment timed out. Retrying payment..."], "next": "PaymentState"}
    else:
        return {"messages": ["Payment failed due to an error. Please try again later."], "next": END}

def final_state(state: VisitorState):
    """FinalState: Send email confirmation and finalize the appointment."""
    if state.payment_confirmed:
        appointment_details = f"Doctor: {state.doctor_name}\nTime: {state.selected_slot}"
        hospital_location = "123 Main St, Springfield, USA"
        email_success = email_tool(state.visitor_email, appointment_details, hospital_location)

        if email_success:
            state.email_sent = True
            return {"messages": [f"Appointment confirmed. Details sent to your email: {state.visitor_email}"], "next": END}
        else:
            return {"messages": ["Appointment confirmed, but failed to send email. Please contact support."], "next": END}
    else:
        return {"messages": ["Payment confirmation failed. Appointment could not be finalized."], "next": END}

# ---------------------------------------
# Step 5: Build Langgraph Workflow
# ---------------------------------------
workflow = StateGraph(VisitorState)

# Add nodes
workflow.add_node("InputState", input_state)
workflow.add_node("RegistrationState", registration_state)
workflow.add_node("SchedulingState", scheduling_state)
workflow.add_node("PaymentState", payment_state)
workflow.add_node("FinalState", final_state)

# Define edges
workflow.add_edge("InputState", "RegistrationState")
workflow.add_edge("RegistrationState", "SchedulingState")
workflow.add_edge("SchedulingState", "PaymentState")
workflow.add_edge("PaymentState", "FinalState")

# Entry Point
workflow.set_entry_point("InputState")
compiled_graph = workflow.compile()

# ---------------------------------------
# Step 6: Gradio Interface
# ---------------------------------------
def gradio_interface(visitor_name, visitor_mobile, visitor_email, doctor_name, department_name):
    """Interface for Gradio application."""
    state = VisitorState(
        visitor_name=visitor_name,
        visitor_mobile=visitor_mobile,
        visitor_email=visitor_email,
        doctor_name=doctor_name,
        department_name=department_name,
    )
    # Execute workflow
    result = compiled_graph.invoke(state.model_dump())
    return "\n".join(result["messages"])

iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="Visitor Name"),
        gr.Textbox(label="Visitor Mobile Number"),
        gr.Textbox(label="Visitor Email"),
        gr.Textbox(label="Doctor Name"),
        gr.Textbox(label="Department Name"),
    ],
    outputs="textbox",
)

# Execute the Gradio interface
if __name__ == "__main__":
    iface.launch()