File size: 20,315 Bytes
d7f529a 62f3c8b 70059f9 62f3c8b 2a93a16 62f3c8b 2a93a16 62f3c8b 2a93a16 62f3c8b 2a93a16 62f3c8b 23474ee 97bf913 649caa0 62f3c8b a35a697 649caa0 87b0e6b 9d17c9a 649caa0 a35a697 8569432 9d17c9a 8569432 9d17c9a a35a697 9d17c9a 649caa0 9d17c9a 649caa0 a35a697 9d17c9a a35a697 649caa0 9d17c9a a35a697 649caa0 9d17c9a 649caa0 c0fdd98 87c40f0 c0fdd98 4be6fd3 c0fdd98 23474ee d7f529a 3879be6 9b99a81 87c40f0 d7f529a 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 3879be6 9b99a81 3879be6 9b99a81 3879be6 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 e6939fe 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 3879be6 9b99a81 3879be6 ed68491 9b99a81 87c40f0 9b99a81 87c40f0 9b99a81 87c40f0 9c379a0 c0fdd98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
'''
import gradio as gr
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@spaces.GPU
def fake_gpu():
pass
# Define a function to respond to user input
def respond(message, history):
# Create a response based on the user's message
response = "You said: " + message
# Append the message and response to history
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chatbot Interface")
# Initialize chatbot with the new message type
chatbot_interface = gr.Chatbot(type='messages') # Specify type='messages'
user_input = gr.Textbox(label="Your Message", placeholder="Type something...")
submit_btn = gr.Button("Send")
# Define the behavior of the submit button
submit_btn.click(fn=respond, inputs=[user_input, chatbot_interface], outputs=chatbot_interface)
# Launch the Gradio application
demo.launch()
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph,END,START
from typing import TypedDict
class InputState(TypedDict):
string_var :str
numeric_var :int
def changeState(input: InputState):
print(f"Current value: {input}")
return input
# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')
# Define the agent functions
def agent1(response):
return f"Agent 1: {response}"
def agent2(response):
return f"Agent 2: {response}"
# Define the prompts and LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(
input_variables=["query"],
template="You are in state s1. {{query}}"
))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(
input_variables=["query"],
template="You are in state s2. {{query}}"
))
# Create a state graph with required schemas for inputs and outputs
graph = StateGraph(InputState)
# Add states to the graph
graph.add_node("s1",changeState)
graph.add_node("s2",changeState)
# Define transitions
graph.add_edge(START, "s1") # Transition from s1 to s2
graph.add_edge("s1", "s2") # Transition from s2 to s1
graph.add_edge("s2", END)
# Initialize the current state
current_state = "s1"
def handle_input(query):
global current_state
output = ''
# Process user input based on current state
if current_state == "s1":
output = chain1.invoke(input=query) # Invoke chain1 with user input
response = agent1(output) # Process output through Agent 1
current_state = "s2" # Transition to state s2
elif current_state == "s2":
output = chain2.invoke(input=query) # Invoke chain2 with user input
response = agent2(output) # Process output through Agent 2
current_state = "s1" # Transition back to state s1
return response
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chatbot Interface")
chatbot_interface = gr.Chatbot()
user_input = gr.Textbox(label="Your Message", placeholder="Type something here...")
submit_btn = gr.Button("Send")
# Define the behavior of the submit button
submit_btn.click(
fn=lambda input_text: handle_input(input_text), # Handle user input
inputs=[user_input],
outputs=chatbot_interface
)
# Launch the Gradio application
demo.launch()
'''
'''
from typing import Annotated, Sequence, TypedDict
import operator
import functools
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
#name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
name="Qwen/Qwen2.5-7B-Instruct-1M"
tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=500, # text to generate for outputs
)
print ("pipeline is created")
# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)
# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members
# Supervisor prompt
system_prompt = (
"You are a supervisor tasked with managing a conversation between the following workers: {members}."
" Given the following user request, respond with the workers to act next. Each worker will perform a task"
" and respond with their results and status. When all workers are finished, respond with FINISH."
)
# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
]
).partial(options=str(options), members=", ".join(members))
print ("Prompt Template created")
# Supervisor routing logic
def route_tool_response(llm_response):
"""
Parse the LLM response to determine the next step based on routing logic.
"""
if "FINISH" in llm_response:
return "FINISH"
for member in members:
if member in llm_response:
return member
return "Unknown"
def supervisor_chain(state):
"""
Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
"""
messages = state.get("messages", [])
print(f"[TRACE] Supervisor received messages: {messages}") # Trace input messages
user_prompt = prompt.format(messages=messages)
try:
llm_response = pipe(user_prompt, max_new_tokens=500)[0]["generated_text"]
print(f"[TRACE] LLM Response: {llm_response}") # Trace LLM interaction
except Exception as e:
raise RuntimeError(f"LLM processing error: {e}")
next_action = route_tool_response(llm_response)
print(f"[TRACE] Supervisor deciding next action: {next_action}") # Trace state changes
return {"next": next_action}
# AgentState definition
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
next: str
# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()
# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
llm=llm,
tools=[tavily_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You are a web researcher."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("Created agents with their respective prompts")
code_agent = create_openai_tools_agent(
llm=llm,
tools=[python_repl_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You may generate safe Python code for analysis."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("create_openai_tools_agent")
# Create the workflow
workflow = StateGraph(AgentState)
# Nodes
workflow.add_node("Researcher", research_agent) # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent) # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)
# Add edges for workflow transitions
for member in members:
workflow.add_edge(member, "supervisor")
workflow.add_conditional_edges(
"supervisor",
lambda x: x["next"],
{k: k for k in members} | {"FINISH": END} # Dynamically map workers to their actions
)
print("[DEBUG] Workflow edges added: supervisor -> members/FINISH based on 'next'")
# Define entry point
workflow.set_entry_point("supervisor")
print(workflow)
# Compile the workflow
graph = workflow.compile()
#from IPython.display import display, Image
#display(Image(graph.get_graph().draw_mermaid_png()))
# Properly formatted initial state
initial_state = {
"messages": [
#HumanMessage(content="Code hello world and print it to the terminal.") # Correct format for user input
HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.") # Correct format for user input
]
}
# Execute the workflow
try:
print(f"[TRACE] Initial workflow state: {initial_state}")
result = graph.invoke(initial_state)
print(f"[TRACE] Workflow Result: {result}") # Final workflow result
except Exception as e:
print(f"[ERROR] Workflow execution failed: {e}")
'''
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from langchain_huggingface import HuggingFacePipeline
from langchain.tools import Tool
from langchain.agents import create_react_agent
from langgraph.graph import StateGraph, END
from pydantic import BaseModel
import gradio as gr
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@spaces.GPU
def fake_gpu():
pass
# ---------------------------------------
# Step 1: Define Hugging Face LLM (Qwen/Qwen2.5-7B-Instruct-1M)
# ---------------------------------------
def create_llm():
model_name = "Qwen/Qwen2.5-7B-Instruct-1M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
llm_pipeline = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
device=-1, # CPU mode, set to 0 for GPU
max_new_tokens=200
)
return HuggingFacePipeline(pipeline=llm_pipeline)
# ---------------------------------------
# Step 2: Create Agents
# ---------------------------------------
llm = create_llm()
# Registration Agent
registration_agent = Tool(
name="registration_check",
description="Check if a patient is registered.",
func=lambda details: registration_tool(details.get("visitor_name"), details.get("visitor_mobile"))
)
# Scheduling Agent
scheduling_agent = Tool(
name="schedule_appointment",
description="Fetch available time slots for a doctor.",
func=lambda details: doctor_slots_tool(details.get("doctor_name"))
)
# Payment Agent
payment_agent = Tool(
name="process_payment",
description="Generate a payment link and confirm the payment.",
func=lambda details: confirm_payment_tool(details.get("transaction_id"))
)
# Email Agent
email_agent = Tool(
name="send_email",
description="Send appointment confirmation email to the visitor.",
func=lambda details: email_tool(
details.get("visitor_email"),
details.get("appointment_details"),
details.get("hospital_location")
)
)
# ---------------------------------------
# Step 3: Tools and Mock Functions
# ---------------------------------------
def registration_tool(visitor_name: str, visitor_mobile: str) -> bool:
registered_visitors = [{"visitor_name": "John Doe", "visitor_mobile": "1234567890"}]
return any(
v["visitor_name"] == visitor_name and v["visitor_mobile"] == visitor_mobile
for v in registered_visitors
)
def register_visitor(visitor_name: str, visitor_mobile: str) -> bool:
"""Register a new user if not already registered."""
return True # Simulate successful registration
def doctor_slots_tool(doctor_name: str):
available_slots = {
"Dr. Smith": ["10:00 AM", "2:00 PM"],
"Dr. Brown": ["12:00 PM"]
}
return available_slots.get(doctor_name, [])
def payment_tool(amount: float):
"""Generate a payment link."""
return f"http://mock-payment-link.com/pay?amount={amount}"
def confirm_payment_tool(transaction_id: str) -> dict:
"""Confirm the payment."""
if transaction_id == "TIMEOUT":
return {"status": "FAILED", "reason_code": "timeout"}
elif transaction_id == "SUCCESS":
return {"status": "SUCCESS", "reason_code": None}
else:
return {"status": "FAILED", "reason_code": "other_error"}
def email_tool(visitor_email: str, appointment_details: str, hospital_location: str) -> bool:
"""Simulate sending an email to the visitor with appointment details."""
print(f"Sending email to {visitor_email}...")
print(f"Appointment Details: {appointment_details}")
print(f"Hospital Location: {hospital_location}")
# Simulate success
return True
# ---------------------------------------
# Step 4: Define Workflow States
# ---------------------------------------
class VisitorState(BaseModel):
visitor_name: str = ""
visitor_mobile: str = ""
visitor_email: str = ""
doctor_name: str = ""
department_name: str = ""
selected_slot: str = ""
messages: list = []
payment_confirmed: bool = False
email_sent: bool = False
def input_state(state: VisitorState):
"""InputState: Collect visitor details."""
return {"messages": ["Please provide your name, mobile number, and email."], "next": "RegistrationState"}
def registration_state(state: VisitorState):
"""Registration State: Check and register visitor."""
is_registered = registration_tool(state.visitor_name, state.visitor_mobile)
if is_registered:
return {"messages": ["Visitor is registered."], "next": "SchedulingState"}
else:
successfully_registered = register_visitor(state.visitor_name, state.visitor_mobile)
if successfully_registered:
return {"messages": ["Visitor has been successfully registered."], "next": "SchedulingState"}
else:
return {"messages": ["Registration failed. Please try again later."], "next": END}
def scheduling_state(state: VisitorState):
"""SchedulingState: Fetch available slots for a doctor."""
available_slots = doctor_slots_tool(state.doctor_name)
if available_slots:
state.selected_slot = available_slots[0]
return {"messages": [f"Slot selected for {state.doctor_name}: {state.selected_slot}"], "next": "PaymentState"}
else:
return {"messages": [f"No available slots for {state.doctor_name}."], "next": END}
def payment_state(state: VisitorState):
"""PaymentState: Generate payment link and confirm."""
payment_link = payment_tool(500)
state.messages.append(f"Please proceed to pay at: {payment_link}")
# Simulate payment confirmation
payment_response = confirm_payment_tool("SUCCESS")
if payment_response["status"] == "SUCCESS":
state.payment_confirmed = True
return {"messages": ["Payment successful. Appointment is being finalized."], "next": "FinalState"}
elif payment_response["reason_code"] == "timeout":
return {"messages": ["Payment timed out. Retrying payment..."], "next": "PaymentState"}
else:
return {"messages": ["Payment failed due to an error. Please try again later."], "next": END}
def final_state(state: VisitorState):
"""FinalState: Send email confirmation and finalize the appointment."""
if state.payment_confirmed:
appointment_details = f"Doctor: {state.doctor_name}\nTime: {state.selected_slot}"
hospital_location = "123 Main St, Springfield, USA"
email_success = email_tool(state.visitor_email, appointment_details, hospital_location)
if email_success:
state.email_sent = True
return {"messages": [f"Appointment confirmed. Details sent to your email: {state.visitor_email}"], "next": END}
else:
return {"messages": ["Appointment confirmed, but failed to send email. Please contact support."], "next": END}
else:
return {"messages": ["Payment confirmation failed. Appointment could not be finalized."], "next": END}
# ---------------------------------------
# Step 5: Build Langgraph Workflow
# ---------------------------------------
workflow = StateGraph(VisitorState)
# Add nodes
workflow.add_node("InputState", input_state)
workflow.add_node("RegistrationState", registration_state)
workflow.add_node("SchedulingState", scheduling_state)
workflow.add_node("PaymentState", payment_state)
workflow.add_node("FinalState", final_state)
# Define edges
workflow.add_edge("InputState", "RegistrationState")
workflow.add_edge("RegistrationState", "SchedulingState")
workflow.add_edge("SchedulingState", "PaymentState")
workflow.add_edge("PaymentState", "FinalState")
# Entry Point
workflow.set_entry_point("InputState")
compiled_graph = workflow.compile()
# ---------------------------------------
# Step 6: Gradio Interface
# ---------------------------------------
def gradio_interface(visitor_name, visitor_mobile, visitor_email, doctor_name, department_name):
"""Interface for Gradio application."""
state = VisitorState(
visitor_name=visitor_name,
visitor_mobile=visitor_mobile,
visitor_email=visitor_email,
doctor_name=doctor_name,
department_name=department_name,
)
# Execute workflow
result = compiled_graph.invoke(state.model_dump())
return "\n".join(result["messages"])
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Visitor Name"),
gr.Textbox(label="Visitor Mobile Number"),
gr.Textbox(label="Visitor Email"),
gr.Textbox(label="Doctor Name"),
gr.Textbox(label="Department Name"),
],
outputs="textbox",
)
# Execute the Gradio interface
if __name__ == "__main__":
iface.launch()
|