Commit
·
ff6986a
1
Parent(s):
34efa22
Upload 3 files
Browse files- app.py +66 -0
- emotion_analysis.py +17 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from emotion_analysis import get_emotion
|
4 |
+
import base64
|
5 |
+
|
6 |
+
|
7 |
+
def read_data(file_path):
|
8 |
+
file_extension = file_path.split('.')[-1].lower()
|
9 |
+
|
10 |
+
if file_extension == 'xlsx' or file_extension == 'xls':
|
11 |
+
data = pd.read_excel(file_path)
|
12 |
+
elif file_extension == 'csv':
|
13 |
+
data = pd.read_csv(file_path)
|
14 |
+
else:
|
15 |
+
raise ValueError("Unsupported file format. Only Excel (xlsx, xls) and CSV (csv) files are supported.")
|
16 |
+
|
17 |
+
return data
|
18 |
+
|
19 |
+
|
20 |
+
# Streamlit app
|
21 |
+
def main():
|
22 |
+
st.title("Text Emotion Detection")
|
23 |
+
menu = ["Input Text", "Batch Processing"]
|
24 |
+
option = st.sidebar.radio("Select an option", menu)
|
25 |
+
|
26 |
+
|
27 |
+
if option == "Input Text":
|
28 |
+
text = st.text_area("Enter your text:")
|
29 |
+
if st.button("Submit"):
|
30 |
+
if text.strip() != "":
|
31 |
+
emotion_detail, confidence_score = get_emotion(text)
|
32 |
+
st.write("Detected Emotion")
|
33 |
+
st.write(f"{emotion_detail[0]} - {confidence_score}")
|
34 |
+
else:
|
35 |
+
st.write("Please enter some text.")
|
36 |
+
|
37 |
+
elif option == "Batch Processing":
|
38 |
+
uploaded_file = st.file_uploader("Upload CSV or Excel file", type=["csv", "xlsx"])
|
39 |
+
|
40 |
+
if uploaded_file is not None:
|
41 |
+
file_name = uploaded_file.name
|
42 |
+
file_extension = file_name.split('.')[-1].lower()
|
43 |
+
file_name = uploaded_file.name
|
44 |
+
if file_extension == 'xlsx' or file_extension == 'xls':
|
45 |
+
dataframe = pd.read_excel(uploaded_file)
|
46 |
+
elif file_extension == 'csv':
|
47 |
+
dataframe = pd.read_csv(uploaded_file)
|
48 |
+
else:
|
49 |
+
raise ValueError("Unsupported file format. Only Excel (xlsx, xls) and CSV (csv) files are supported.")
|
50 |
+
# dataframe = pd.read_excel(uploaded_file)
|
51 |
+
if "text" not in dataframe.columns:
|
52 |
+
st.write("CSV file should have a 'text' column.")
|
53 |
+
else:
|
54 |
+
dataframe["emotion"], dataframe["confidence"] = zip(*dataframe["text"].map(get_emotion))
|
55 |
+
st.write("Detected Emotions")
|
56 |
+
st.write(dataframe)
|
57 |
+
# Download button
|
58 |
+
csv = dataframe.to_csv(index=False)
|
59 |
+
b64 = base64.b64encode(csv.encode()).decode() # Convert DataFrame to CSV string
|
60 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="processed_data.csv">Download</a>'
|
61 |
+
st.markdown(href, unsafe_allow_html=True)
|
62 |
+
else:
|
63 |
+
pass
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
main()
|
emotion_analysis.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
|
3 |
+
|
4 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
|
5 |
+
model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
|
6 |
+
|
7 |
+
emotion = pipeline('sentiment-analysis',
|
8 |
+
model='arpanghoshal/EmoRoBERTa')
|
9 |
+
|
10 |
+
|
11 |
+
def get_emotion(text):
|
12 |
+
emotion_labels = emotion(text)
|
13 |
+
emotion_detail = [item['label'] for item in emotion_labels]
|
14 |
+
print("The detected emotion is:", emotion_detail)
|
15 |
+
confidence_score = str(round([item['score'] for item in emotion_labels][0]*100, 2)) + "%"
|
16 |
+
print("The confidence score is:", confidence_score)
|
17 |
+
return emotion_detail[0], confidence_score
|
requirements.txt
ADDED
Binary file (3.67 kB). View file
|
|