File size: 9,219 Bytes
e3b04c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cec936
e3b04c8
 
 
 
 
6cec936
e3b04c8
 
 
 
 
6cec936
e3b04c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# import gradio as gr
# from huggingface_hub import InferenceClient
# import pandas as pd

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# ################################################################

# # Load your CSV file
# df = pd.read_csv("your_file.csv")

# # Create dropdowns for exam name, year, and problem number
# exam_names = df["exam name"].unique()
# year_options = df["year"].unique()
# problem_numbers = df["problem number"].unique()

# exam_dropdown = gr.Dropdown(exam_names, label="Exam Name")
# year_dropdown = gr.Dropdown(year_options, label="Year")
# problem_dropdown = gr.Dropdown(problem_numbers, label="Problem Number")

# # Define the functions for the three buttons
# def solve_problem(exam, year, problem):
#     problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
#     prompt = f"Solve the following problem: {problem_statement}"
#     response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95)
#     return response.choices[0].text

# def give_hints(exam, year, problem):
#     problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
#     prompt = f"Give hints for the following problem: {problem_statement}"
#     response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95)
#     return response.choices[0].text

# def create_similar_problem(exam, year, problem):
#     problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
#     prompt = f"Create a similar problem to the following one: {problem_statement}"
#     response = client.chat_completion(prompt, max_tokens=512, temperature=0.7, top_p=0.95)
#     return response.choices[0].text

# ################################################################

# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )

# ################################################################

# # Create Gradio interface with Blocks context
# with gr.Blocks() as dropdown_interface:
#     with gr.Column():
#         exam_dropdown.render()
#         year_dropdown.render()
#         problem_dropdown.render()
        
#         solve_button = gr.Button("Solve Problem")
#         hints_button = gr.Button("Give Hints")
#         similar_problem_button = gr.Button("Create Similar Problem")
        
#         output_text = gr.Textbox(label="Output")
    
#         solve_button.click(solve_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)
#         hints_button.click(give_hints, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)
#         similar_problem_button.click(create_similar_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)

# ################################################################

# # Combine both interfaces into a tabbed layout
# tabbed_interface = gr.TabbedInterface(
#     [dropdown_interface, demo],
#     ["Problem Solver", "Chat Interface"]
# )

# ################################################################

# # Launch the app
# if __name__ == "__main__":
#     tabbed_interface.launch()


import pandas as pd
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Load your CSV file
df = pd.read_csv("your_file.csv")

# Create dropdowns for exam name, year, and problem number
exam_names = df["exam name"].unique()
year_options = df["year"].unique()
problem_numbers = df["problem number"].unique()

exam_dropdown = gr.Dropdown(exam_names, label="Exam Name")
year_dropdown = gr.Dropdown(year_options, label="Year")
problem_dropdown = gr.Dropdown(problem_numbers, label="Problem Number")

# Define the functions for the three buttons
def solve_problem(exam, year, problem):
    problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
    prompt = f"Solve the following problem: {problem_statement}"
    response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta")
    return response[0]['generated_text']

def give_hints(exam, year, problem):
    problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
    prompt = f"Give hints for the following problem: {problem_statement}"
    response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta")
    return response[0]['generated_text']

def create_similar_problem(exam, year, problem):
    problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
    prompt = f"Create a similar problem to the following one: {problem_statement}"
    response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta")
    return response[0]['generated_text']

# Define the chat response function
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

# Create Gradio interface with Blocks context
with gr.Blocks() as dropdown_interface:
    with gr.Column():
        exam_dropdown.render()
        year_dropdown.render()
        problem_dropdown.render()
        
        solve_button = gr.Button("Solve Problem")
        hints_button = gr.Button("Give Hints")
        similar_problem_button = gr.Button("Create Similar Problem")
        
        output_text = gr.Textbox(label="Output")
    
        solve_button.click(solve_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)
        hints_button.click(give_hints, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)
        similar_problem_button.click(create_similar_problem, inputs=[exam_dropdown, year_dropdown, problem_dropdown], outputs=output_text)

chat_interface = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

# Combine both interfaces into a tabbed layout
tabbed_interface = gr.TabbedInterface(
    [dropdown_interface, chat_interface],
    ["Problem Solver", "Chat Interface"]
)

# Launch the app
if __name__ == "__main__":
    tabbed_interface.launch()