import streamlit as st from langchain_openai import ChatOpenAI from langchain_community.llms import Ollama from langchain_community.utilities import SQLDatabase from langchain.chains import create_sql_query_chain import geopandas as gpd import ibis from ibis import _ geoparquet = "https://data.source.coop/fiboa/be-vlg/be_vlg.parquet" con = ibis.duckdb.connect("duck.db", extensions = ["spatial"]) crops = con.read_parquet(geoparquet, "crops").cast({"geometry": "geometry"}) # df = crops.to_pandas() df = crops.to_pandas() # + #gdf = gpd.read_parquet("be_vlg.parquet") #gdf.crs # - st.set_page_config( page_title="fiboa chat tool", page_icon="🦜", ) st.title("🚧 Early prototype 🚧") # + # from langchain.chains.sql_database.prompt import PROMPT # peek at the default from langchain_core.prompts.prompt import PromptTemplate new_prompt = PromptTemplate(input_variables=['dialect', 'input', 'table_info', 'top_k'], template= ''' Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Never use limit for {top_k}. You can order the results by a relevant column to return the most interesting examples in the database. This duckdb database includes full support for spatial queries, so it will understand most PostGIS-type queries as well. If you are asked to "map" or "show on a map", be sure to alway select the "geometry" column in your query. In the response, return only the SQLQuery to run. Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Use the following format: Question: Question here SQLQuery: SQL Query to run SQLResult: Result of the SQLQuery Answer: Final answer here Only use the following tables: {table_info} Question: {input} ''' ) # - llm = ChatOpenAI(temperature=0, api_key=st.secrets["OPENAI_API_KEY"]) # + # Create the SQL query chain with the custom prompt db = SQLDatabase.from_uri("duckdb:///duck.db", view_support=True) chain = create_sql_query_chain(llm, db, prompt=new_prompt, k= 11) ## testing #user_input = "Show on a map the 10 largest fields?" #sql_query = chain.invoke({"question": user_input}) #print(sql_query) # # + import lonboard def map_layer(gdf): layer = lonboard.PolygonLayer.from_geopandas( gdf, get_line_width=20, # width in default units (meters) line_width_min_pixels=0.2, # minimum width when zoomed out get_fill_color=[204, 251, 254], # light blue get_line_color=[37, 36, 34], # dark border color ) m = lonboard.Map(layer) return m # - import geopandas as gpd from ibis import _ def as_geopandas(response): sql_query = f"CREATE OR REPLACE VIEW testing AS ({response})" con.raw_sql(sql_query) gdf = con.table("testing") if 'geometry' in gdf.columns: gdf = (gdf .cast({"geometry": "geometry"}) .mutate(geometry = _.geometry.convert("EPSG:31370", "EPSG:4326")) .to_pandas()) gdf.set_crs(epsg=4326, inplace=True) return map_layer(gdf) return gdf # + #response = "SELECT * FROM crops LIMIT 100" #fields = as_geopandas(response) #fields # - example = "Which are the 10 largest fields?" with st.container(): if prompt := st.chat_input(example, key="chain"): st.chat_message("user").write(prompt) with st.chat_message("assistant"): response = chain.invoke({"question": prompt}) st.write(response) result = as_geopandas(response) result st.divider()