Sriv890's picture
Upload 2 files
aec26a9 verified
raw
history blame
5.72 kB
import gradio as gr
import gradio as gr
from groq import Groq
import os
from deep_translator import GoogleTranslator
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
import whisper
import gradio as gr
from groq import Groq
import os
from deep_translator import GoogleTranslator # Import the GoogleTranslator class
import pickle
import whisper
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
import matplotlib.pyplot as plt
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Replace with your actual API key
api_key = "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"
client = Groq(api_key=api_key)
# Load the custom model for image generation
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors" # Ensure the correct checkpoint
# Load the custom UNet and set up the pipeline
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Function to transcribe, translate, and generate an image
def process_audio(audio_path, generate_image):
if audio_path is None:
return "Please upload an audio file.", None, None
# Step 1: Transcribe audio
try:
with open(audio_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(os.path.basename(audio_path), file.read()),
model="whisper-large-v3",
language="ta",
response_format="verbose_json",
)
tamil_text = transcription.text
except Exception as e:
return f"An error occurred during transcription: {str(e)}", None, None
# Step 2: Translate Tamil to English
try:
translator = GoogleTranslator(source='ta', target='en')
translation = translator.translate(tamil_text)
except Exception as e:
return tamil_text, f"An error occurred during translation: {str(e)}", None
# Step 3: Generate image (if selected)
if generate_image:
try:
# Use the custom model and pipeline to generate an image
img = pipe(translation, num_inference_steps=4, guidance_scale=0).images[0]
return tamil_text, translation, img
except Exception as e:
return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
return tamil_text, translation, None
# Function for direct prompt to image generation
def generate_image_from_prompt(prompt):
try:
img = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
return img
except Exception as e:
return f"An error occurred during image generation: {str(e)}"
# Assuming your 'process_audio' and 'generate_image_from_prompt' functions are defined elsewhere
# Gradio interface with the requested customizations
with gr.Blocks(css="""
.gradio-container {background-color: #D8D2C2;}
.btn-red {background-color: red; color: white;}
.gr-button:hover {color: white !important;}
.gr-button {color: black !important;}
.gr-textbox {color: black !important;}
.gr-Tab {color: black !important;} /* Tab text color set to black */
""") as iface:
# Title
gr.Markdown("<h1 style='text-align: center; color:black;'>TransArt - Multimodal Application</h1>")
# First Tab: Audio to Text -> Image
with gr.Tab("Audio to Text"):
gr.Markdown("<h3 style='text-align: center; color:black;'>Upload audio file, translate and generate an image</h3>")
# Audio input and processing button
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
generate_image_checkbox = gr.Checkbox(label="Generate Image", value=False)
# Outputs for transcription, translation, and image
outputs = [
gr.Textbox(label="Tamil Transcription"),
gr.Textbox(label="English Translation"),
gr.Image(label="Generated Image") # Expecting an image output
]
# Button for processing audio
btn = gr.Button("Proceed Audio", elem_classes="btn-red")
# Bind the correct function that returns transcription, translation, and an image
btn.click(fn=process_audio, inputs=[audio_input, generate_image_checkbox], outputs=outputs)
# Second Tab: Direct Prompt to Image Generation
with gr.Tab("Prompt to Image"):
gr.Markdown("<h3 style='text-align: center; color:black;'>Input a prompt and generate an image</h3>")
# Text input for the prompt
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=5)
# Image output
image_output = gr.Image(label="Generated Image") # Expecting an image output
# Button for generating the image from the prompt
btn_image = gr.Button("Proceed Image Generation", elem_classes="btn-red")
# Bind the correct function that returns an image
btn_image.click(fn=generate_image_from_prompt, inputs=prompt_input, outputs=image_output)
# Launch the interface
iface.launch(server_name="0.0.0.0")