Sriv890 commited on
Commit
688da1c
·
verified ·
1 Parent(s): b3374c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +135 -135
app.py CHANGED
@@ -1,135 +1,135 @@
1
- import gradio as gr
2
- import gradio as gr
3
- from groq import Groq
4
- import os
5
- from deep_translator import GoogleTranslator
6
- from deep_translator import GoogleTranslator # Import the GoogleTranslator class
7
- import whisper
8
- import gradio as gr
9
- from groq import Groq
10
- import os
11
- from deep_translator import GoogleTranslator # Import the GoogleTranslator class
12
- import pickle
13
- import whisper
14
- from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
15
- import matplotlib.pyplot as plt
16
- import torch
17
- from huggingface_hub import hf_hub_download
18
- from safetensors.torch import load_file
19
-
20
-
21
- # Replace with your actual API key
22
- api_key = "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"
23
- client = Groq(api_key=api_key)
24
-
25
- # Load the custom model for image generation
26
- base = "stabilityai/stable-diffusion-xl-base-1.0"
27
- repo = "ByteDance/SDXL-Lightning"
28
- ckpt = "sdxl_lightning_4step_unet.safetensors" # Ensure the correct checkpoint
29
-
30
- # Load the custom UNet and set up the pipeline
31
- unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16)
32
- unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
33
- pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu")
34
- pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
35
-
36
-
37
- # Function to transcribe, translate, and generate an image
38
- def process_audio(audio_path, generate_image):
39
- if audio_path is None:
40
- return "Please upload an audio file.", None, None
41
-
42
- # Step 1: Transcribe audio
43
- try:
44
- with open(audio_path, "rb") as file:
45
- transcription = client.audio.transcriptions.create(
46
- file=(os.path.basename(audio_path), file.read()),
47
- model="whisper-large-v3",
48
- language="ta",
49
- response_format="verbose_json",
50
- )
51
- tamil_text = transcription.text
52
- except Exception as e:
53
- return f"An error occurred during transcription: {str(e)}", None, None
54
-
55
- # Step 2: Translate Tamil to English
56
- try:
57
- translator = GoogleTranslator(source='ta', target='en')
58
- translation = translator.translate(tamil_text)
59
- except Exception as e:
60
- return tamil_text, f"An error occurred during translation: {str(e)}", None
61
-
62
- # Step 3: Generate image (if selected)
63
- if generate_image:
64
- try:
65
- # Use the custom model and pipeline to generate an image
66
- img = pipe(translation, num_inference_steps=4, guidance_scale=0).images[0]
67
- return tamil_text, translation, img
68
- except Exception as e:
69
- return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
70
-
71
- return tamil_text, translation, None
72
-
73
-
74
- # Function for direct prompt to image generation
75
- def generate_image_from_prompt(prompt):
76
- try:
77
- img = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
78
- return img
79
- except Exception as e:
80
- return f"An error occurred during image generation: {str(e)}"
81
-
82
-
83
- # Assuming your 'process_audio' and 'generate_image_from_prompt' functions are defined elsewhere
84
-
85
- # Gradio interface with the requested customizations
86
- with gr.Blocks(css="""
87
- .gradio-container {background-color: #D8D2C2;}
88
- .btn-red {background-color: red; color: white;}
89
- .gr-button:hover {color: white !important;}
90
- .gr-button {color: black !important;}
91
- .gr-textbox {color: black !important;}
92
- .gr-Tab {color: black !important;} /* Tab text color set to black */
93
- """) as iface:
94
-
95
- # Title
96
- gr.Markdown("<h1 style='text-align: center; color:black;'>TransArt - Multimodal Application</h1>")
97
-
98
- # First Tab: Audio to Text -> Image
99
- with gr.Tab("Audio to Text"):
100
- gr.Markdown("<h3 style='text-align: center; color:black;'>Upload audio file, translate and generate an image</h3>")
101
-
102
- # Audio input and processing button
103
- with gr.Row():
104
- audio_input = gr.Audio(type="filepath", label="Upload Audio File")
105
- generate_image_checkbox = gr.Checkbox(label="Generate Image", value=False)
106
-
107
- # Outputs for transcription, translation, and image
108
- outputs = [
109
- gr.Textbox(label="Tamil Transcription"),
110
- gr.Textbox(label="English Translation"),
111
- gr.Image(label="Generated Image") # Expecting an image output
112
- ]
113
-
114
- # Button for processing audio
115
- btn = gr.Button("Proceed Audio", elem_classes="btn-red")
116
- # Bind the correct function that returns transcription, translation, and an image
117
- btn.click(fn=process_audio, inputs=[audio_input, generate_image_checkbox], outputs=outputs)
118
-
119
- # Second Tab: Direct Prompt to Image Generation
120
- with gr.Tab("Prompt to Image"):
121
- gr.Markdown("<h3 style='text-align: center; color:black;'>Input a prompt and generate an image</h3>")
122
-
123
- # Text input for the prompt
124
- prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=5)
125
-
126
- # Image output
127
- image_output = gr.Image(label="Generated Image") # Expecting an image output
128
-
129
- # Button for generating the image from the prompt
130
- btn_image = gr.Button("Proceed Image Generation", elem_classes="btn-red")
131
- # Bind the correct function that returns an image
132
- btn_image.click(fn=generate_image_from_prompt, inputs=prompt_input, outputs=image_output)
133
-
134
- # Launch the interface
135
- iface.launch(server_name="0.0.0.0")
 
1
+ import gradio as gr
2
+ import gradio as gr
3
+ from groq import Groq
4
+ import os
5
+ from deep_translator import GoogleTranslator
6
+ from deep_translator import GoogleTranslator # Import the GoogleTranslator class
7
+ import whisper
8
+ import gradio as gr
9
+ from groq import Groq
10
+ import os
11
+ from deep_translator import GoogleTranslator # Import the GoogleTranslator class
12
+ import pickle
13
+ import whisper
14
+ from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
15
+
16
+ import torch
17
+ from huggingface_hub import hf_hub_download
18
+ from safetensors.torch import load_file
19
+
20
+
21
+ # Replace with your actual API key
22
+ api_key = "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"
23
+ client = Groq(api_key=api_key)
24
+
25
+ # Load the custom model for image generation
26
+ base = "stabilityai/stable-diffusion-xl-base-1.0"
27
+ repo = "ByteDance/SDXL-Lightning"
28
+ ckpt = "sdxl_lightning_4step_unet.safetensors" # Ensure the correct checkpoint
29
+
30
+ # Load the custom UNet and set up the pipeline
31
+ unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16)
32
+ unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
33
+ pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu")
34
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
35
+
36
+
37
+ # Function to transcribe, translate, and generate an image
38
+ def process_audio(audio_path, generate_image):
39
+ if audio_path is None:
40
+ return "Please upload an audio file.", None, None
41
+
42
+ # Step 1: Transcribe audio
43
+ try:
44
+ with open(audio_path, "rb") as file:
45
+ transcription = client.audio.transcriptions.create(
46
+ file=(os.path.basename(audio_path), file.read()),
47
+ model="whisper-large-v3",
48
+ language="ta",
49
+ response_format="verbose_json",
50
+ )
51
+ tamil_text = transcription.text
52
+ except Exception as e:
53
+ return f"An error occurred during transcription: {str(e)}", None, None
54
+
55
+ # Step 2: Translate Tamil to English
56
+ try:
57
+ translator = GoogleTranslator(source='ta', target='en')
58
+ translation = translator.translate(tamil_text)
59
+ except Exception as e:
60
+ return tamil_text, f"An error occurred during translation: {str(e)}", None
61
+
62
+ # Step 3: Generate image (if selected)
63
+ if generate_image:
64
+ try:
65
+ # Use the custom model and pipeline to generate an image
66
+ img = pipe(translation, num_inference_steps=4, guidance_scale=0).images[0]
67
+ return tamil_text, translation, img
68
+ except Exception as e:
69
+ return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
70
+
71
+ return tamil_text, translation, None
72
+
73
+
74
+ # Function for direct prompt to image generation
75
+ def generate_image_from_prompt(prompt):
76
+ try:
77
+ img = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
78
+ return img
79
+ except Exception as e:
80
+ return f"An error occurred during image generation: {str(e)}"
81
+
82
+
83
+ # Assuming your 'process_audio' and 'generate_image_from_prompt' functions are defined elsewhere
84
+
85
+ # Gradio interface with the requested customizations
86
+ with gr.Blocks(css="""
87
+ .gradio-container {background-color: #D8D2C2;}
88
+ .btn-red {background-color: red; color: white;}
89
+ .gr-button:hover {color: white !important;}
90
+ .gr-button {color: black !important;}
91
+ .gr-textbox {color: black !important;}
92
+ .gr-Tab {color: black !important;} /* Tab text color set to black */
93
+ """) as iface:
94
+
95
+ # Title
96
+ gr.Markdown("<h1 style='text-align: center; color:black;'>TransArt - Multimodal Application</h1>")
97
+
98
+ # First Tab: Audio to Text -> Image
99
+ with gr.Tab("Audio to Text"):
100
+ gr.Markdown("<h3 style='text-align: center; color:black;'>Upload audio file, translate and generate an image</h3>")
101
+
102
+ # Audio input and processing button
103
+ with gr.Row():
104
+ audio_input = gr.Audio(type="filepath", label="Upload Audio File")
105
+ generate_image_checkbox = gr.Checkbox(label="Generate Image", value=False)
106
+
107
+ # Outputs for transcription, translation, and image
108
+ outputs = [
109
+ gr.Textbox(label="Tamil Transcription"),
110
+ gr.Textbox(label="English Translation"),
111
+ gr.Image(label="Generated Image") # Expecting an image output
112
+ ]
113
+
114
+ # Button for processing audio
115
+ btn = gr.Button("Proceed Audio", elem_classes="btn-red")
116
+ # Bind the correct function that returns transcription, translation, and an image
117
+ btn.click(fn=process_audio, inputs=[audio_input, generate_image_checkbox], outputs=outputs)
118
+
119
+ # Second Tab: Direct Prompt to Image Generation
120
+ with gr.Tab("Prompt to Image"):
121
+ gr.Markdown("<h3 style='text-align: center; color:black;'>Input a prompt and generate an image</h3>")
122
+
123
+ # Text input for the prompt
124
+ prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the scene description here...", lines=5)
125
+
126
+ # Image output
127
+ image_output = gr.Image(label="Generated Image") # Expecting an image output
128
+
129
+ # Button for generating the image from the prompt
130
+ btn_image = gr.Button("Proceed Image Generation", elem_classes="btn-red")
131
+ # Bind the correct function that returns an image
132
+ btn_image.click(fn=generate_image_from_prompt, inputs=prompt_input, outputs=image_output)
133
+
134
+ # Launch the interface
135
+ iface.launch(server_name="0.0.0.0")