Srujan111 commited on
Commit
c5edece
·
1 Parent(s): 0e03469

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -33
app.py DELETED
@@ -1,33 +0,0 @@
1
- from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
2
- import torch
3
- from PIL import Image
4
-
5
- model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
6
- feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
7
- tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
8
-
9
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
- model.to(device)
11
-
12
-
13
-
14
- max_length = 16
15
- num_beams = 4
16
- gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
17
- def predict_step(image_paths):
18
- images = []
19
- for image_path in image_paths:
20
- i_image = Image.open(image_path)
21
- if i_image.mode != "RGB":
22
- i_image = i_image.convert(mode="RGB")
23
-
24
- images.append(i_image)
25
-
26
- pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
27
- pixel_values = pixel_values.to(device)
28
-
29
- output_ids = model.generate(pixel_values, **gen_kwargs)
30
-
31
- preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
32
- preds = [pred.strip() for pred in preds]
33
- return preds