File size: 1,789 Bytes
30b222a
 
 
 
686c070
30b222a
a049e89
26d1451
30b222a
 
 
 
a049e89
30b222a
 
5ceb303
70af8cf
30b222a
 
 
5ceb303
70af8cf
30b222a
 
 
5ceb303
70af8cf
30b222a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from transformers import AutoTokenizer
from transformers import pipeline
from transformers import TextDataset, DataCollatorForLanguageModeling
from transformers import Trainer, TrainingArguments,AutoModelWithLMHead
import gradio as gr

chef = pipeline('text-generation', model="./en_gpt2-medium_rachel_replics/en_gpt2-medium_rachel_replics", tokenizer="gpt2-medium")


# gradio part 
def echo(message, history, model):
    
    #chef = pipeline('text-generation', model="./models/en_gpt2-medium_rachel_replics", tokenizer=model_type)
    
    if model=="gpt2-medium":
        answer = chef(f"<s>NOTFRIEND: {message}\nRACHEL:")[0]['generated_text']
        answer = answer[answer.find(f"RACHEL: ") + len("RACHEL") + 2 : answer.find('</s>')]
        return answer
    
    elif model=="gpt2-medium":
        answer = chef(f"<s>NOTFRIEND: {message}\nRACHEL:")[0]['generated_text']
        answer = answer[answer.find(f"RACHEL: ") + len("RACHEL") + 2 : answer.find('</s>')]
        return answer
    
    elif model=="gpt2-medium":
        answer = chef(f"<s>NOTFRIEND: {message}\nRACHEL:")[0]['generated_text']
        answer = answer[answer.find(f"RACHEL: ") + len("RACHEL") + 2 : answer.find('</s>')]
        return answer
    



title = "Chatbot who speaks like Rachel from Friends"
description = "You have a good opportunity to have a dialog with actress from Friends - Rachel Green"

model = gr.Dropdown(["gpt2", "gpt2-medium", "gpt2-large"], label="LLM", info="What model do you want to use?", value="gpt2-medium")

with gr.Blocks() as demo:

    gr.ChatInterface(
        fn=echo,
        title=title,
        description=description,
        additional_inputs=[model],
        retry_btn=None,
        undo_btn=None,
        clear_btn=None,
    )

demo.launch(debug=False, share=True)