from transformers import AutoTokenizer from transformers import pipeline from transformers import TextDataset, DataCollatorForLanguageModeling from transformers import Trainer, TrainingArguments,AutoModelWithLMHead import gradio as gr chef = pipeline('text-generation', model="./en_gpt2-medium_rachel_replics/en_gpt2-medium_rachel_replics", tokenizer="gpt2-medium") # gradio part def echo(message, history, model): #chef = pipeline('text-generation', model="./models/en_gpt2-medium_rachel_replics", tokenizer=model_type) if model=="gpt2-medium": answer = chef(f"NOTFRIEND: {message}\nRACHEL:")[0]['generated_text'] answer = answer[answer.find(f"RACHEL: ") + len("RACHEL") + 2 : answer.find('')] return answer elif model=="gpt2-medium": answer = chef(f"NOTFRIEND: {message}\nRACHEL:")[0]['generated_text'] answer = answer[answer.find(f"RACHEL: ") + len("RACHEL") + 2 : answer.find('')] return answer elif model=="gpt2-medium": answer = chef(f"NOTFRIEND: {message}\nRACHEL:")[0]['generated_text'] answer = answer[answer.find(f"RACHEL: ") + len("RACHEL") + 2 : answer.find('')] return answer title = "Chatbot who speaks like Rachel from Friends" description = "You have a good opportunity to have a dialog with actress from Friends - Rachel Green" model = gr.Dropdown(["gpt2", "gpt2-medium", "gpt2-large"], label="LLM", info="What model do you want to use?", value="gpt2-medium") with gr.Blocks() as demo: gr.ChatInterface( fn=echo, title=title, description=description, additional_inputs=[model], retry_btn=None, undo_btn=None, clear_btn=None, ) demo.launch(debug=False, share=True)