StKirill commited on
Commit
93c49fb
·
verified ·
1 Parent(s): 6c51481

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -15
app.py CHANGED
@@ -76,7 +76,7 @@ def removeStopWords(text):
76
  question_norm_and_stop = df['Normalized question'].apply(removeStopWords)
77
  df.insert(3, 'Normalized and StopWords question', question_norm_and_stop, True)
78
 
79
- tfidf = TfidfVectorizer() # initializing tf-idf
80
  x_tfidf = tfidf.fit_transform(df['Normalized and StopWords question']).toarray() # oversimplifying this converts words to vectors
81
  features_tfidf = tfidf.get_feature_names_out() # use function to get all the normalized words
82
  df_tfidf = pd.DataFrame(x_tfidf, columns = features_tfidf) # create dataframe to show the 0, 1 value for each word
@@ -279,7 +279,7 @@ def chat_bert_context(question, history):
279
  else:
280
  memory_weights = np.array([0.3, 1.0])
281
 
282
- history_sentence = np.zeros(shape=(len_history+1, 384))
283
 
284
  for ind, h in enumerate(history):
285
 
@@ -299,19 +299,6 @@ def chat_bert_context(question, history):
299
  #------------------------------------------------------------------------------------------------#
300
  # gradio part
301
  def echo(message, history, model):
302
- # print(model)
303
- # print(history)
304
- # if model=="TF-IDF":
305
- # answer = chat_tfidf(message)
306
- # return answer
307
-
308
- # elif model=="W2V":
309
- # answer = chat_word2vec(message)
310
- # return answer
311
-
312
- # elif model=="BERT":
313
- # answer = chat_bert(message)
314
- # return answer
315
 
316
  if model=="TF-IDF":
317
  # answer = chat_tfidf(message)
 
76
  question_norm_and_stop = df['Normalized question'].apply(removeStopWords)
77
  df.insert(3, 'Normalized and StopWords question', question_norm_and_stop, True)
78
 
79
+ tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5024) # initializing tf-idf
80
  x_tfidf = tfidf.fit_transform(df['Normalized and StopWords question']).toarray() # oversimplifying this converts words to vectors
81
  features_tfidf = tfidf.get_feature_names_out() # use function to get all the normalized words
82
  df_tfidf = pd.DataFrame(x_tfidf, columns = features_tfidf) # create dataframe to show the 0, 1 value for each word
 
279
  else:
280
  memory_weights = np.array([0.3, 1.0])
281
 
282
+ history_sentence = np.zeros(shape=(len_history+1, 768))
283
 
284
  for ind, h in enumerate(history):
285
 
 
299
  #------------------------------------------------------------------------------------------------#
300
  # gradio part
301
  def echo(message, history, model):
 
 
 
 
 
 
 
 
 
 
 
 
 
302
 
303
  if model=="TF-IDF":
304
  # answer = chat_tfidf(message)