Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
-
# import parsing # decomment to download data from the website and parse it
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import pandas as pd
|
4 |
import nltk
|
@@ -12,6 +17,8 @@ from nltk import pos_tag # for parts of speech
|
|
12 |
from sklearn.metrics import pairwise_distances # cosine similarity
|
13 |
from nltk import word_tokenize
|
14 |
from nltk.corpus import stopwords
|
|
|
|
|
15 |
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
import gradio as gr
|
17 |
import time
|
@@ -74,6 +81,7 @@ x_tfidf = tfidf.fit_transform(df['Normalized and StopWords question']).toarray()
|
|
74 |
features_tfidf = tfidf.get_feature_names_out() # use function to get all the normalized words
|
75 |
df_tfidf = pd.DataFrame(x_tfidf, columns = features_tfidf) # create dataframe to show the 0, 1 value for each word
|
76 |
|
|
|
77 |
def chat_tfidf(question):
|
78 |
tidy_question = text_normalization(removeStopWords(question)) # clean & lemmatize the question
|
79 |
tf = tfidf.transform([tidy_question]).toarray() # convert the question into a vector
|
@@ -83,23 +91,239 @@ def chat_tfidf(question):
|
|
83 |
answer = df['answer'].loc[index_value]
|
84 |
return answer
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
87 |
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def echo(message, history, model):
|
91 |
-
print(model)
|
92 |
-
print(history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
if model=="TF-IDF":
|
94 |
-
answer = chat_tfidf(message)
|
|
|
95 |
return answer
|
96 |
|
97 |
elif model=="W2V":
|
98 |
-
answer = chat_word2vec(message)
|
|
|
99 |
return answer
|
100 |
|
101 |
elif model=="BERT":
|
102 |
-
answer =
|
103 |
return answer
|
104 |
|
105 |
|
|
|
1 |
+
# import parsing # decomment to download data from the website and parse it # string, gensim, tqdm, transformers, torch
|
2 |
+
from string import punctuation
|
3 |
+
from tqdm.auto import tqdm, trange
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
|
8 |
import pandas as pd
|
9 |
import nltk
|
|
|
17 |
from sklearn.metrics import pairwise_distances # cosine similarity
|
18 |
from nltk import word_tokenize
|
19 |
from nltk.corpus import stopwords
|
20 |
+
from gensim.models import Word2Vec, KeyedVectors
|
21 |
+
import gensim.downloader as api
|
22 |
from sklearn.metrics.pairwise import cosine_similarity
|
23 |
import gradio as gr
|
24 |
import time
|
|
|
81 |
features_tfidf = tfidf.get_feature_names_out() # use function to get all the normalized words
|
82 |
df_tfidf = pd.DataFrame(x_tfidf, columns = features_tfidf) # create dataframe to show the 0, 1 value for each word
|
83 |
|
84 |
+
# bot tf idf algorithm without context
|
85 |
def chat_tfidf(question):
|
86 |
tidy_question = text_normalization(removeStopWords(question)) # clean & lemmatize the question
|
87 |
tf = tfidf.transform([tidy_question]).toarray() # convert the question into a vector
|
|
|
91 |
answer = df['answer'].loc[index_value]
|
92 |
return answer
|
93 |
|
94 |
+
# bot tf idf algorithm with context
|
95 |
+
def chat_tfidf_context(question, history):
|
96 |
+
|
97 |
+
len_history = len(history)
|
98 |
+
|
99 |
+
if len_history > 1:
|
100 |
+
memory_weights = np.array([0.1, 0.3, 1.0]) # .reshape((3,1))
|
101 |
+
# take last two sentences in accordance to bot's memory
|
102 |
+
history = history[-2:]
|
103 |
+
|
104 |
+
else:
|
105 |
+
memory_weights = np.array([0.3, 1.0])
|
106 |
+
|
107 |
+
history_sentence = np.zeros(shape=(len_history+1, 5024))
|
108 |
+
|
109 |
+
for ind, h in enumerate(history):
|
110 |
+
# normalize first question from context
|
111 |
+
tidy_question = text_normalization(removeStopWords(h[0]))
|
112 |
+
# pass via tfidf
|
113 |
+
tf = tfidf.transform([tidy_question]).toarray()
|
114 |
+
|
115 |
+
# assign tf idf vector to history sentence
|
116 |
+
history_sentence[ind] = tf * memory_weights[ind]
|
117 |
+
|
118 |
+
tidy_question = text_normalization(removeStopWords(question))
|
119 |
+
tf = tfidf.transform([tidy_question]).toarray()
|
120 |
+
|
121 |
+
history_sentence[-1] = tf
|
122 |
+
history_sentence = history_sentence.mean(axis=0).reshape(1,-1)
|
123 |
+
|
124 |
+
cos = 1- pairwise_distances(df_tfidf, history_sentence, metric = 'cosine')
|
125 |
+
index_value = cos.argmax()
|
126 |
+
answer = df['answer'].loc[index_value]
|
127 |
+
|
128 |
+
return answer
|
129 |
+
#------------------------------------------------------------------------------------------------#
|
130 |
+
punkt = [p for p in punctuation] + ["`", "``" ,"''", "'"]
|
131 |
+
|
132 |
+
def tokenize(sent: str) -> str:
|
133 |
+
tokens = nltk.word_tokenize(sent.lower()) # tokenize words
|
134 |
+
return ' '.join([word for word in tokens if word not in stop and word not in punkt])
|
135 |
+
|
136 |
+
questions_preprocessed = []
|
137 |
+
for question in df["question"].tolist() + df["answer"].tolist():
|
138 |
+
questions_preprocessed.append(tokenize(question))
|
139 |
+
|
140 |
+
questions_w2v = [sent.split(" ") for sent in questions_preprocessed]
|
141 |
+
|
142 |
+
w2v = KeyedVectors.load('w2v.bin')
|
143 |
+
unknown_vector = np.random.uniform(low=-0.2, high=0.2, size=(25,))
|
144 |
+
|
145 |
+
# define function to form sentences with w2v
|
146 |
+
def w2v_get_vector_for_sentence(sentence):
|
147 |
+
sent = nltk.word_tokenize(sentence.lower())
|
148 |
+
sent = [word for word in sent if word not in punkt]
|
149 |
+
sentence_vector = []
|
150 |
+
if len(sent)==0:
|
151 |
+
sentence_vector.append(unknown_vector)
|
152 |
+
else:
|
153 |
+
for word in sent:
|
154 |
+
if word in w2v.key_to_index:
|
155 |
+
sentence_vector.append(w2v[word])
|
156 |
+
else:
|
157 |
+
sentence_vector.append(unknown_vector)
|
158 |
+
|
159 |
+
return np.array(sentence_vector).mean(axis=0)
|
160 |
+
|
161 |
+
# create base for w2v
|
162 |
+
base = np.zeros(shape=(len(df.question), 25))
|
163 |
+
for ind, sentence in enumerate(df['question']): # df[df['question'].str.len() >= 1]
|
164 |
+
base[ind] = w2v_get_vector_for_sentence(sentence)
|
165 |
+
|
166 |
+
# bot w2v algorithm without context
|
167 |
+
def chat_word2vec(question):
|
168 |
+
question = [w2v_get_vector_for_sentence(question)]
|
169 |
+
cos = 1-pairwise_distances(base, question, metric = 'cosine') # calculate the cosine value
|
170 |
+
index_value = cos.argmax() # find the index of the maximum cosine value
|
171 |
+
answer = df['answer'].loc[index_value]
|
172 |
+
return answer
|
173 |
+
|
174 |
+
# bot w2v algorithm with context
|
175 |
+
def chat_word2vec_context(question, history):
|
176 |
+
|
177 |
+
len_history = len(history)
|
178 |
+
|
179 |
+
if len_history > 1:
|
180 |
+
memory_weights = np.array([0.1, 0.3, 1.0]) # .reshape((3,1))
|
181 |
+
# take last two sentences in accordance to bot's memory
|
182 |
+
history = history[-2:]
|
183 |
+
|
184 |
+
else:
|
185 |
+
memory_weights = np.array([0.3, 1.0])
|
186 |
+
|
187 |
+
history_sentence = np.zeros(shape=(len_history+1, 25))
|
188 |
+
|
189 |
+
for ind, h in enumerate(history):
|
190 |
+
sentence = w2v_get_vector_for_sentence(h[0])
|
191 |
+
history_sentence[ind] = sentence * memory_weights[ind]
|
192 |
+
|
193 |
+
question = w2v_get_vector_for_sentence(question)
|
194 |
+
|
195 |
+
history_sentence[-1] = question
|
196 |
+
history_sentence = history_sentence.mean(axis=0).reshape(1, -1)
|
197 |
+
|
198 |
+
cos = 1-pairwise_distances(base, history_sentence, metric = 'cosine')
|
199 |
+
index_value = cos.argmax()
|
200 |
+
answer = df['answer'].loc[index_value]
|
201 |
|
202 |
+
return answer
|
203 |
|
204 |
+
#------------------------------------------------------------------------------------------------#
|
205 |
+
# Let's try bert model by elastic and with e5
|
206 |
+
model_name = "elastic/multilingual-e5-small-optimized"
|
207 |
+
device = "cpu"
|
208 |
|
209 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
210 |
+
model = AutoModel.from_pretrained(model_name)
|
211 |
|
212 |
+
class BERTSearchEngine:
|
213 |
+
def __init__(self, model, tokenizer):
|
214 |
+
self.raw_procesed_data = [self.preprocess(sample, tokenizer) for sample in text_database]
|
215 |
+
self.base = []
|
216 |
+
self.retriever = None
|
217 |
+
self.inverted_index = {}
|
218 |
+
self._init_retriever(model, tokenizer, text_database)
|
219 |
+
self._init_inverted_index(text_database)
|
220 |
+
|
221 |
+
@staticmethod
|
222 |
+
def preprocess(sentence: str, tokenizer):
|
223 |
+
return tokenizer(sentence, padding=True, truncation=True, return_tensors='pt')
|
224 |
+
|
225 |
+
def _embed_bert_cls(self, tokenized_text: dict[torch.Tensor]) -> np.array:
|
226 |
+
with torch.no_grad():
|
227 |
+
model_output = self.retriever(**{k: v.to(self.retriever.device) for k, v in tokenized_text.items()})
|
228 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
229 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
230 |
+
return embeddings[0].cpu().numpy()
|
231 |
+
|
232 |
+
def _init_retriever(self, model, tokenizer, text_database):
|
233 |
+
self.retriever = model
|
234 |
+
self.tokenizer = tokenizer
|
235 |
+
self.base = None #np.array([self._embed_bert_cls(self.preprocess(text, tokenizer)) for text in tqdm(text_database)])
|
236 |
+
|
237 |
+
def retrieve(self, query: str) -> np.array:
|
238 |
+
return self._embed_bert_cls(self.preprocess(query, self.tokenizer))
|
239 |
+
|
240 |
+
def retrieve_documents(self, query: str, top_k=3) -> list[int]:
|
241 |
+
query_vector = self.retrieve(query)
|
242 |
+
cosine_similarities = cosine_similarity([query_vector], self.base).flatten()
|
243 |
+
relevant_indices = np.argsort(cosine_similarities, axis=0)[::-1][:top_k]
|
244 |
+
return relevant_indices.tolist()
|
245 |
+
|
246 |
+
def _init_inverted_index(self, text_database: list[str]):
|
247 |
+
self.inverted_index = dict(enumerate(text_database))
|
248 |
+
|
249 |
+
def display_relevant_docs(self, query, full_database, top_k=3) -> list[int]:
|
250 |
+
docs_indexes = self.retrieve_documents(query, top_k=top_k)
|
251 |
+
return [self.inverted_index[ind] for ind in docs_indexes]
|
252 |
+
|
253 |
+
def find_answer(self, query: str) -> int:
|
254 |
+
query_vector = self.retrieve(query)
|
255 |
+
cosine_similarities = cosine_similarity([query_vector], self.base).flatten()
|
256 |
+
relevant_indice = np.argmax(cosine_similarities, axis=0)
|
257 |
+
return relevant_indice
|
258 |
+
|
259 |
+
simple_search_engine = BERTSearchEngine(model, tokenizer)
|
260 |
+
simple_search_engine.bert = np.load(bert_base.npy)
|
261 |
+
|
262 |
+
# bot bert algorithm without context
|
263 |
+
def chat_bert(question):
|
264 |
+
ind = simple_search_engine.find_answer(question)
|
265 |
+
answer = df['answer'].iloc[ind]
|
266 |
+
return answer
|
267 |
+
|
268 |
+
# bot bert algorithm with context
|
269 |
+
def chat_bert_context(question, history):
|
270 |
+
|
271 |
+
len_history = len(history)
|
272 |
+
|
273 |
+
if len_history > 1:
|
274 |
+
memory_weights = np.array([0.1, 0.3, 1.0]) # .reshape((3,1))
|
275 |
+
# take last two sentences in accordance to bot's memory
|
276 |
+
history = history[-2:]
|
277 |
+
|
278 |
+
else:
|
279 |
+
memory_weights = np.array([0.3, 1.0])
|
280 |
+
|
281 |
+
history_sentence = np.zeros(shape=(len_history+1, 384))
|
282 |
+
|
283 |
+
for ind, h in enumerate(history):
|
284 |
+
|
285 |
+
sentence = simple_search_engine.retrieve(h)
|
286 |
+
history_sentence[ind] = sentence * memory_weights[ind]
|
287 |
+
|
288 |
+
question = simple_search_engine.retrieve(question)
|
289 |
+
|
290 |
+
history_sentence[-1] = question
|
291 |
+
history_sentence = history_sentence.mean(axis=0).reshape(1, -1)
|
292 |
+
|
293 |
+
cosine_similarities = cosine_similarity(history_sentence, simple_search_engine.base).flatten()
|
294 |
+
relevant_indice = np.argmax(cosine_similarities, axis=0)
|
295 |
+
answer = df['answer'].loc[relevant_indice]
|
296 |
+
|
297 |
+
return answer
|
298 |
+
#------------------------------------------------------------------------------------------------#
|
299 |
+
# gradio part
|
300 |
def echo(message, history, model):
|
301 |
+
# print(model)
|
302 |
+
# print(history)
|
303 |
+
# if model=="TF-IDF":
|
304 |
+
# answer = chat_tfidf(message)
|
305 |
+
# return answer
|
306 |
+
|
307 |
+
# elif model=="W2V":
|
308 |
+
# answer = chat_word2vec(message)
|
309 |
+
# return answer
|
310 |
+
|
311 |
+
# elif model=="BERT":
|
312 |
+
# answer = chat_bert(message)
|
313 |
+
# return answer
|
314 |
+
|
315 |
if model=="TF-IDF":
|
316 |
+
# answer = chat_tfidf(message)
|
317 |
+
answer = chat_tfidf_context(message, history)
|
318 |
return answer
|
319 |
|
320 |
elif model=="W2V":
|
321 |
+
# answer = chat_word2vec(message)
|
322 |
+
answer = chat_word2vec_context(message, history)
|
323 |
return answer
|
324 |
|
325 |
elif model=="BERT":
|
326 |
+
answer = chat_bert_context(message, history)
|
327 |
return answer
|
328 |
|
329 |
|