Update app.py
Browse files
app.py
CHANGED
@@ -211,7 +211,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
211 |
model = AutoModel.from_pretrained(model_name)
|
212 |
|
213 |
class BERTSearchEngine:
|
214 |
-
def __init__(self, model, tokenizer):
|
215 |
self.raw_procesed_data = [self.preprocess(sample, tokenizer) for sample in text_database]
|
216 |
self.base = []
|
217 |
self.retriever = None
|
@@ -257,7 +257,7 @@ class BERTSearchEngine:
|
|
257 |
relevant_indice = np.argmax(cosine_similarities, axis=0)
|
258 |
return relevant_indice
|
259 |
|
260 |
-
simple_search_engine = BERTSearchEngine(model, tokenizer)
|
261 |
simple_search_engine.bert = np.load(bert_base.npy)
|
262 |
|
263 |
# bot bert algorithm without context
|
|
|
211 |
model = AutoModel.from_pretrained(model_name)
|
212 |
|
213 |
class BERTSearchEngine:
|
214 |
+
def __init__(self, model, tokenizer, text_database):
|
215 |
self.raw_procesed_data = [self.preprocess(sample, tokenizer) for sample in text_database]
|
216 |
self.base = []
|
217 |
self.retriever = None
|
|
|
257 |
relevant_indice = np.argmax(cosine_similarities, axis=0)
|
258 |
return relevant_indice
|
259 |
|
260 |
+
simple_search_engine = BERTSearchEngine(model, tokenizer, df["question"])
|
261 |
simple_search_engine.bert = np.load(bert_base.npy)
|
262 |
|
263 |
# bot bert algorithm without context
|