Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,320 Bytes
168b252 6dcf9f2 168b252 b7d9de6 168b252 20bba6a 168b252 51a21b5 168b252 a5dab0e 168b252 0a8e54f 5ada620 0a8e54f 168b252 6dcf9f2 168b252 6dcf9f2 168b252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils
import trimesh
import tempfile
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def preprocess_mesh(mesh_prompt):
print("Processing mesh")
trimesh_mesh = trimesh.load_mesh(mesh_prompt)
trimesh_mesh.export(mesh_prompt+'.glb')
return mesh_prompt+'.glb'
def preprocess_image(image):
if image is None:
return None
image = pipeline.preprocess_image(image, resolution=1024)
return image
@spaces.GPU
def generate_3d(image, seed=-1,
ss_guidance_strength=3, ss_sampling_steps=50,
slat_guidance_strength=3, slat_sampling_steps=6,):
if image is None:
return None, None, None
if seed == -1:
seed = np.random.randint(0, MAX_SEED)
image = pipeline.preprocess_image(image, resolution=1024)
normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object')
outputs = pipeline.run(
normal_image,
seed=seed,
formats=["mesh",],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
generated_mesh = outputs['mesh'][0]
# Save outputs
import datetime
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
render_results = render_utils.render_video(generated_mesh, resolution=1024, ssaa=1, num_frames=8, pitch=0.25, inverse_direction=True)
def combine_diagonal(color_np, normal_np):
# Convert images to numpy arrays
h, w, c = color_np.shape
# Create a boolean mask that is True for pixels where x > y (diagonally)
mask = np.fromfunction(lambda y, x: x > y, (h, w))
mask = mask.astype(bool)
mask = np.stack([mask] * c, axis=-1)
# Where mask is True take color, else normal
combined_np = np.where(mask, color_np, normal_np)
return Image.fromarray(combined_np)
preview_images = [combine_diagonal(c, n) for c, n in zip(render_results['color'], render_results['normal'])]
# Export mesh
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)
trimesh_mesh.export(mesh_path)
return preview_images, normal_image, mesh_path, mesh_path
def convert_mesh(mesh_path, export_format):
"""Download the mesh in the selected format."""
if not mesh_path:
return None
# Create a temporary file to store the mesh data
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
temp_file_path = temp_file.name
new_mesh_path = mesh_path.replace(".glb", f".{export_format}")
mesh = trimesh.load_mesh(mesh_path)
mesh.export(temp_file_path) # Export to the temporary file
return temp_file_path # Return the path to the temporary file
# Create the Gradio interface with improved layout
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1>
<p style='text-align: center;'>
<strong>V0.1, Introduced By
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> from CUHKSZ and
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> from ByteDance</strong>
</p>
"""
)
with gr.Row():
gr.Markdown("""
<p align="center">
<a title="Website" href="https://stable-x.github.io/Hi3DGen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Single Image"):
with gr.Row():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil")
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil")
with gr.Tab("Multiple Images"):
gr.Markdown("<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1)
gr.Markdown("#### Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1)
gr.Markdown("#### Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1)
with gr.Group():
with gr.Row():
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary")
# Right column - Output
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Preview"):
output_gallery = gr.Gallery(label="Examples", columns=4, rows=2, object_fit="contain", height="auto",show_label=False)
with gr.Tab("3D Model"):
with gr.Column():
model_output = gr.Model3D(label="3D Model Preview (Each model is approximately 40MB, may take around 1 minute to load)")
with gr.Column():
export_format = gr.Dropdown(
choices=["obj", "glb", "ply", "stl"],
value="glb",
label="File Format"
)
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt]
)
gen_shape_btn.click(
generate_3d,
inputs=[
image_prompt, seed,
ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps
],
outputs=[output_gallery, normal_output, model_output, download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
def update_download_button(mesh_path, export_format):
if not mesh_path:
return gr.File.update(value=None, interactive=False)
download_path = convert_mesh(mesh_path, export_format)
return download_path
export_format.change(
update_download_button,
inputs=[model_output, export_format],
outputs=[download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=image_prompt,
)
gr.Markdown(
"""
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We would like to express our gratitude to the open-source research community and the developers of these pioneering projects:
- **3D Modeling:** Our 3D Model is finetuned from the SOTA open-source 3D foundation model [Trellis](https://github.com/microsoft/TRELLIS) and we draw inspiration from the teams behind [Rodin](https://hyperhuman.deemos.com/rodin), [Tripo](https://www.tripo3d.ai/app/home), and [Dora](https://github.com/Seed3D/Dora).
- **Normal Estimation:** Our Normal Estimation Model builds on the leading normal estimation research such as [StableNormal](https://github.com/hugoycj/StableNormal) and [GenPercept](https://github.com/aim-uofa/GenPercept).
**Your contributions and collaboration push the boundaries of 3D modeling!**
"""
)
if __name__ == "__main__":
# Initialize pipeline
pipeline = TrellisImageTo3DPipeline.from_pretrained("Stable-X/trellis-normal-v0-1")
pipeline.cuda()
# Initialize normal predictor
normal_predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-8-1')
# Launch the app
demo.launch()
|