Spaces:
Running
on
L40S
Running
on
L40S
File size: 4,616 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import os
import cv2
import json
import numpy as np
import os.path as osp
from collections import deque
from dust3r.utils.image import imread_cv2
from .base_many_view_dataset import BaseManyViewDataset
'''
Preprocessing code of scannetpp is from splatam
'''
class Scannetpp(BaseManyViewDataset):
def __init__(self, num_seq=100, num_frames=5,
min_thresh=10, max_thresh=100,
test_id=None, full_video=False,
kf_every=1, *args, ROOT, **kwargs):
self.ROOT = ROOT
super().__init__(*args, **kwargs)
self.num_seq = num_seq
self.num_frames = num_frames
self.max_thresh = max_thresh
self.min_thresh = min_thresh
self.test_id = test_id
self.full_video = full_video
self.kf_every = kf_every
# load all scenes
self.load_all_scenes(ROOT)
def __len__(self):
return len(self.scene_list) * self.num_seq
def load_all_scenes(self, base_dir, num_seq=200):
if self.test_id is None:
meta_split = osp.join(base_dir, 'splits', f'nvs_sem_{self.split}.txt')
if not osp.exists(meta_split):
raise FileNotFoundError(f"Split file {meta_split} not found")
with open(meta_split) as f:
self.scene_list = f.read().splitlines()
print(f"Found {len(self.scene_list)} scenes in split {self.split}")
else:
if isinstance(self.test_id, list):
self.scene_list = self.test_id
else:
self.scene_list = [self.test_id]
print(f"Test_id: {self.test_id}")
def _get_views(self, idx, resolution, rng, attempts=0):
scene_id = self.scene_list[idx // self.num_seq]
cams_metadata_path = osp.join(self.ROOT, 'data', scene_id, 'dslr/nerfstudio/transforms_undistorted.json')
cams_meta_data = json.load(open(cams_metadata_path, "r"))
fx, fy, cx, cy = cams_meta_data['fl_x'], cams_meta_data['fl_y'], cams_meta_data['cx'], cams_meta_data['cy']
frame_meta_data = cams_meta_data['frames']
train_info_path = osp.join(self.ROOT, 'data', scene_id, 'dslr/train_test_lists.json')
train_info = json.load(open(train_info_path, "r"))
imgs_idxs_ = sorted(train_info['train'])
imgs_idxs = self.sample_frame_idx(imgs_idxs_, rng, full_video=self.full_video)
imgs_idxs = deque(imgs_idxs)
filepath_index_mapping = {frame["file_path"]: index for index, frame in enumerate(frame_meta_data)}
views = []
while len(imgs_idxs) > 0:
im_idx = imgs_idxs.popleft()
# Load image data
impath = osp.join(self.ROOT, 'data', scene_id, 'dslr/undistorted_images', im_idx)
depthpath = osp.join(self.ROOT, 'data', scene_id, 'dslr/undistorted_depths', im_idx.replace('.JPG', '.png'))
rgb_image = imread_cv2(impath)
depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0
# Load camera params
frame_metadata = frame_meta_data[filepath_index_mapping.get(im_idx)]
intrinsics = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
camera_pose = np.array(frame_metadata["transform_matrix"], dtype=np.float32)
# gl to cv
camera_pose[:, 1:3] *= -1.0
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
num_valid = (depthmap > 0.0).sum()
if num_valid == 0 or (not np.isfinite(camera_pose).all()):
if self.full_video:
print(f"Warning: No valid depthmap found for {impath}")
continue
else:
if attempts >= 5:
new_idx = rng.integers(0, self.__len__()-1)
return self._get_views(new_idx, resolution, rng)
return self._get_views(idx, resolution, rng, attempts+1)
views.append(dict(
img=rgb_image,
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics,
dataset='scannetpp',
label=osp.join(scene_id, im_idx),
instance=osp.split(impath)[1],
))
return views |