File size: 6,669 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import cv2
import copy
import trimesh
import pyrender
import numpy as np
from tqdm import tqdm
import open3d as o3d
import matplotlib.pyplot as plt

def load_cam_mvsnet(file, interval_scale=1):
        """ read camera txt file """
        cam = np.zeros((2, 4, 4))
        words = file.read().split()
        # read extrinsic
        for i in range(0, 4):
            for j in range(0, 4):
                extrinsic_index = 4 * i + j + 1
                cam[0][i][j] = words[extrinsic_index]

        # read intrinsic
        for i in range(0, 3):
            for j in range(0, 3):
                intrinsic_index = 3 * i + j + 18
                cam[1][i][j] = words[intrinsic_index]

        if len(words) == 29:
            cam[1][3][0] = words[27]
            cam[1][3][1] = float(words[28]) * interval_scale
            cam[1][3][2] = 192
            cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
        elif len(words) == 30:
            cam[1][3][0] = words[27]
            cam[1][3][1] = float(words[28]) * interval_scale
            cam[1][3][2] = words[29]
            cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
        elif len(words) == 31:
            cam[1][3][0] = words[27]
            cam[1][3][1] = float(words[28]) * interval_scale
            cam[1][3][2] = words[29]
            cam[1][3][3] = words[30]
        else:
            cam[1][3][0] = 0
            cam[1][3][1] = 0
            cam[1][3][2] = 0
            cam[1][3][3] = 0
        
        
        extrinsic = cam[0].astype(np.float32)
        intrinsic = cam[1].astype(np.float32)

        return intrinsic, extrinsic

def render_depth_maps(mesh, poses, K, H, W, near=0.01, far=5.0):
    """
    :param mesh: Mesh to be rendered
    :param poses: list of camera poses (c2w under OpenGL convention)
    :param K: camera intrinsics [3, 3]
    :param W: width of image plane
    :param H: height of image plane
    :param near: near clip
    :param far: far clip
    :return: list of rendered depth images [H, W]
    """
    mesh = pyrender.Mesh.from_trimesh(mesh)
    scene = pyrender.Scene()
    scene.add(mesh)
    camera = pyrender.IntrinsicsCamera(fx=K[0, 0], fy=K[1, 1], cx=K[0, 2], cy=K[1, 2], znear=near, zfar=far)
    camera_node = pyrender.Node(camera=camera, matrix=np.eye(4))
    scene.add_node(camera_node)
    renderer = pyrender.OffscreenRenderer(W, H)
    render_flags = pyrender.RenderFlags.OFFSCREEN | pyrender.RenderFlags.DEPTH_ONLY

    depth_maps = []
    for pose in poses:
        scene.set_pose(camera_node, pose)
        depth = renderer.render(scene, render_flags)
        depth_maps.append(depth)

    return depth_maps

def render_dtu_scenes(path_to_scan, method='furu'):
    path_to_cameras = os.path.join(path_to_scan, 'cams')
    path_to_images = os.path.join(path_to_scan, 'images')
    scan_id = int(''.join(filter(str.isdigit, os.path.basename(path_to_scan))))
    if method is not None:
        path_to_depths = os.path.join(path_to_scan, f'depths_{method}')
        path_to_mesh = os.path.join(path_to_scan, f'{method}{scan_id:03d}_l3_surf_11_trim_8.ply')
    else:
        path_to_depths = os.path.join(path_to_scan, 'depths')
        path_to_mesh = os.path.join(path_to_scan, f'{scan_id:03d}_pcd.ply')
    
    #path_to_mesh = os.path.join(path_to_scan, 'stl001_total.ply')
    
    if not os.path.exists(path_to_depths):
        os.makedirs(path_to_depths)
    
    mesh = trimesh.load_mesh(path_to_mesh)
    
    frames = sorted(os.listdir(path_to_images))
    
    img = cv2.imread(os.path.join(path_to_images, frames[0]))
    H, W, _ = img.shape
    
    for i, frame in enumerate(frames):
        campath = os.path.join(path_to_cameras, frame.replace('.jpg', '_cam.txt'))
        print(campath)
        cur_intrinsics, camera_pose = load_cam_mvsnet(open(campath, 'r'))
        camera_pose = np.linalg.inv(camera_pose)
        
        camera_pose[:, 1:3] *= -1.0
        
        
        
        print(cur_intrinsics)
        
        depth = render_depth_maps(mesh, [camera_pose], cur_intrinsics, H, W, near=0.01, far=5000.)[0]
        
        # plt.imshow(depth)
        # plt.show()      
        # Save depth map
        #cv2.imwrite(os.path.join(path_to_depths, frame.replace('.jpg', '.png')), depth)
        # depth_16bit = (depth).astype(np.uint16)  # Scale to millimeters
        
        # # Save depth map as 16-bit PNG
        # depth_filename = os.path.join(path_to_depths, frame.replace('.jpg', '.png'))
        # cv2.imwrite(depth_filename, depth_16bit)
        # depth = depth.astype(np.float32)
        depth_filename = os.path.join(path_to_depths, frame.replace('.jpg', '.npy'))
        np.save(depth_filename, depth)
        
def get_dtu_mask(path_to_scan, method='furu'):
    
    if method is not None:
        path_to_depths = os.path.join(path_to_scan, f'depths_{method}')
        path_to_masks = os.path.join(path_to_scan, f'masks_{method}')
    
    else:
        path_to_depths = os.path.join(path_to_scan, 'depths')
        path_to_masks = os.path.join(path_to_scan, 'masks')
    
    if not os.path.exists(path_to_masks):
        os.makedirs(path_to_masks)
    

    frames = sorted(os.listdir(path_to_depths))
    
    for i, frame in enumerate(frames):
        depth_filename = os.path.join(path_to_depths, frame)        
        depth = np.load(depth_filename)
        
        mask_path = os.path.join(path_to_masks, frame.replace('.npy', '.png'))
        
        mask = np.ones_like(depth) * 255
        mask[depth == 0] = 0
        mask[depth>900] = 0
        cv2.imwrite(mask_path, mask)


def get_mesh_from_ply(path_to_scan, depth=9, density_thresh=0.1):
    scan_id = int(''.join(filter(str.isdigit, os.path.basename(path_to_scan))))
    path_to_ply = os.path.join(path_to_scan, f'stl{scan_id:03d}_total.ply')
    
    pcd = o3d.io.read_point_cloud(path_to_ply)
    mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
        pcd, depth=depth)
    
    vertices_to_remove = densities < np.quantile(densities, density_thresh)

    new_mesh = copy.deepcopy(mesh)      
    new_mesh = copy.deepcopy(mesh)
    new_mesh.remove_vertices_by_mask(vertices_to_remove)
    
    # save mesh
    path_to_mesh = os.path.join(path_to_scan, f'{scan_id:03d}_pcd.ply')
    o3d.io.write_triangle_mesh(path_to_mesh, new_mesh)
    





path_to_dtu = './data/dtu_test'

scans = sorted(os.listdir(path_to_dtu))

for scan in tqdm(scans):
    print(f"Processing {scan}")
    
    path_to_scan = os.path.join(path_to_dtu, scan)
    
    get_mesh_from_ply(path_to_scan)
    
    render_dtu_scenes(path_to_scan, method=None)
    #get_dtu_mask(path_to_scan, None)