Spaces:
Sleeping
Sleeping
File size: 12,006 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Initialization functions for global alignment
# --------------------------------------------------------
from functools import cache
import numpy as np
import scipy.sparse as sp
import torch
import cv2
import roma
from tqdm import tqdm
from dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses
from dust3r.post_process import estimate_focal_knowing_depth
from dust3r.viz import to_numpy
from dust3r.cloud_opt.commons import edge_str, i_j_ij, compute_edge_scores, compute_edge_scores2
@torch.no_grad()
def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3):
device = self.device
# indices of known poses
nkp, known_poses_msk, known_poses = get_known_poses(self)
assert nkp == self.n_imgs, 'not all poses are known'
# get all focals
nkf, _, im_focals = get_known_focals(self)
assert nkf == self.n_imgs
im_pp = self.get_principal_points()
best_depthmaps = {}
# init all pairwise poses
for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)):
i_j = edge_str(i, j)
# find relative pose for this pair
P1 = torch.eye(4, device=device)
msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1)
_, P2 = fast_pnp(self.pred_j[i_j], float(im_focals[i].mean()),
pp=im_pp[i], msk=msk, device=device, niter_PnP=niter_PnP)
# align the two predicted camera with the two gt cameras
s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]])
# normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1
# and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3])
self._set_pose(self.pw_poses, e, R, T, scale=s)
# remember if this is a good depthmap
score = float(self.conf_i[i_j].mean())
if score > best_depthmaps.get(i, (0,))[0]:
best_depthmaps[i] = score, i_j, s
# init all image poses
for n in range(self.n_imgs):
assert known_poses_msk[n]
_, i_j, scale = best_depthmaps[n]
depth = self.pred_i[i_j][:, :, 2]
self._set_depthmap(n, depth * scale)
@torch.no_grad()
def init_minimum_spanning_tree(self, return_tree=False, **kw):
""" Init all camera poses (image-wise and pairwise poses) given
an initial set of pairwise estimations.
"""
if return_tree:
return minimum_spanning_tree(self.imshapes, self.edges, self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr,
self.device, has_im_poses=self.has_im_poses, verbose=self.verbose, return_tree=True)
device = self.device
pts3d, _, im_focals, im_poses = minimum_spanning_tree(self.imshapes, self.edges,
self.pred_i, self.pred_j, self.conf_i, self.conf_j, self.im_conf, self.min_conf_thr,
device, has_im_poses=self.has_im_poses, verbose=self.verbose,
**kw)
return init_from_pts3d(self, pts3d, im_focals, im_poses)
def compute_distance_matrix(imshapes, edges, conf_i, conf_j):
n_imgs = len(imshapes)
sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j))
dist_matrix = np.full((n_imgs, n_imgs), np.inf)
for (i, j), score in sparse_graph.items():
dist_matrix[i, j] = score
return dist_matrix
def init_from_pts3d(self, pts3d, im_focals, im_poses):
# init poses
nkp, known_poses_msk, known_poses = get_known_poses(self)
if nkp == 1:
raise NotImplementedError("Would be simpler to just align everything afterwards on the single known pose")
elif nkp > 1:
# global rigid SE3 alignment
s, R, T = align_multiple_poses(im_poses[known_poses_msk], known_poses[known_poses_msk])
trf = sRT_to_4x4(s, R, T, device=known_poses.device)
# rotate everything
im_poses = trf @ im_poses
im_poses[:, :3, :3] /= s # undo scaling on the rotation part
for img_pts3d in pts3d:
img_pts3d[:] = geotrf(trf, img_pts3d)
# set all pairwise poses
for e, (i, j) in enumerate(self.edges):
i_j = edge_str(i, j)
# compute transform that goes from cam to world
s, R, T = rigid_points_registration(self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j])
self._set_pose(self.pw_poses, e, R, T, scale=s)
# take into account the scale normalization
s_factor = self.get_pw_norm_scale_factor()
im_poses[:, :3, 3] *= s_factor # apply downscaling factor
for img_pts3d in pts3d:
img_pts3d *= s_factor
# init all image poses
if self.has_im_poses:
for i in range(self.n_imgs):
cam2world = im_poses[i]
depth = geotrf(inv(cam2world), pts3d[i])[..., 2]
self._set_depthmap(i, depth)
self._set_pose(self.im_poses, i, cam2world)
if im_focals[i] is not None:
self._set_focal(i, im_focals[i])
if self.verbose:
print(' init loss =', float(self()))
def minimum_spanning_tree(imshapes, edges, pred_i, pred_j, conf_i, conf_j, im_conf, min_conf_thr,
device, has_im_poses=True, niter_PnP=10, verbose=True, return_tree=False):
n_imgs = len(imshapes)
sparse_graph = -dict_to_sparse_graph(compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j))
msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo()
if return_tree:
return msp
# temp variable to store 3d points
pts3d = [None] * len(imshapes)
todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges
im_poses = [None] * n_imgs
im_focals = [None] * n_imgs
# init with strongest edge
score, i, j = todo.pop()
if verbose:
print(f' init edge ({i}*,{j}*) {score=}')
i_j = edge_str(i, j)
pts3d[i] = pred_i[i_j].clone()
pts3d[j] = pred_j[i_j].clone()
done = {i, j}
if has_im_poses:
im_poses[i] = torch.eye(4, device=device)
im_focals[i] = estimate_focal(pred_i[i_j])
# set initial pointcloud based on pairwise graph
msp_edges = [(i, j)]
while todo:
# each time, predict the next one
score, i, j = todo.pop()
if im_focals[i] is None:
im_focals[i] = estimate_focal(pred_i[i_j])
if i in done:
if verbose:
print(f' init edge ({i},{j}*) {score=}')
assert j not in done
# align pred[i] with pts3d[i], and then set j accordingly
i_j = edge_str(i, j)
s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j])
trf = sRT_to_4x4(s, R, T, device)
pts3d[j] = geotrf(trf, pred_j[i_j])
done.add(j)
msp_edges.append((i, j))
if has_im_poses and im_poses[i] is None:
im_poses[i] = sRT_to_4x4(1, R, T, device)
elif j in done:
if verbose:
print(f' init edge ({i}*,{j}) {score=}')
assert i not in done
i_j = edge_str(i, j)
s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j])
trf = sRT_to_4x4(s, R, T, device)
pts3d[i] = geotrf(trf, pred_i[i_j])
done.add(i)
msp_edges.append((i, j))
if has_im_poses and im_poses[i] is None:
im_poses[i] = sRT_to_4x4(1, R, T, device)
else:
# let's try again later
todo.insert(0, (score, i, j))
if has_im_poses:
# complete all missing informations
pair_scores = list(sparse_graph.values()) # already negative scores: less is best
edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[np.argsort(pair_scores)]
for i, j in edges_from_best_to_worse.tolist():
if im_focals[i] is None:
im_focals[i] = estimate_focal(pred_i[edge_str(i, j)])
for i in range(n_imgs):
if im_poses[i] is None:
msk = im_conf[i] > min_conf_thr
res = fast_pnp(pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP)
if res:
im_focals[i], im_poses[i] = res
if im_poses[i] is None:
im_poses[i] = torch.eye(4, device=device)
im_poses = torch.stack(im_poses)
else:
im_poses = im_focals = None
return pts3d, msp_edges, im_focals, im_poses
def dict_to_sparse_graph(dic):
n_imgs = max(max(e) for e in dic) + 1
res = sp.dok_array((n_imgs, n_imgs))
for edge, value in dic.items():
res[edge] = value
return res
def rigid_points_registration(pts1, pts2, conf):
R, T, s = roma.rigid_points_registration(
pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf.ravel(), compute_scaling=True)
return s, R, T # return un-scaled (R, T)
def sRT_to_4x4(scale, R, T, device):
trf = torch.eye(4, device=device)
trf[:3, :3] = R * scale
trf[:3, 3] = T.ravel() # doesn't need scaling
return trf
def estimate_focal(pts3d_i, pp=None):
if pp is None:
H, W, THREE = pts3d_i.shape
assert THREE == 3
pp = torch.tensor((W/2, H/2), device=pts3d_i.device)
focal = estimate_focal_knowing_depth(pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode='weiszfeld').ravel()
return float(focal)
@cache
def pixel_grid(H, W):
return np.mgrid[:W, :H].T.astype(np.float32)
def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10):
# extract camera poses and focals with RANSAC-PnP
if msk.sum() < 4:
return None # we need at least 4 points for PnP
pts3d, msk = map(to_numpy, (pts3d, msk))
H, W, THREE = pts3d.shape
assert THREE == 3
pixels = pixel_grid(H, W)
if focal is None:
S = max(W, H)
tentative_focals = np.geomspace(S/2, S*3, 21)
else:
tentative_focals = [focal]
if pp is None:
pp = (W/2, H/2)
else:
pp = to_numpy(pp)
best = 0,
for focal in tentative_focals:
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])
success, R, T, inliers = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None,
iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
if not success:
continue
score = len(inliers)
if success and score > best[0]:
best = score, R, T, focal
if not best[0]:
return None
_, R, T, best_focal = best
R = cv2.Rodrigues(R)[0] # world to cam
R, T = map(torch.from_numpy, (R, T))
return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world
def get_known_poses(self):
if self.has_im_poses:
known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses])
known_poses = self.get_im_poses()
return known_poses_msk.sum(), known_poses_msk, known_poses
else:
return 0, None, None
def get_known_focals(self):
if self.has_im_poses:
known_focal_msk = self.get_known_focal_mask()
known_focals = self.get_focals()
return known_focal_msk.sum(), known_focal_msk, known_focals
else:
return 0, None, None
def align_multiple_poses(src_poses, target_poses):
N = len(src_poses)
assert src_poses.shape == target_poses.shape == (N, 4, 4)
def center_and_z(poses):
eps = get_med_dist_between_poses(poses) / 100
return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps*poses[:, :3, 2]))
R, T, s = roma.rigid_points_registration(center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True)
return s, R, T
|