File size: 8,290 Bytes
2caa1bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R Fast Nearest Neighbor
# --------------------------------------------------------
import torch
import numpy as np
import math
from scipy.spatial import KDTree

import mast3r.utils.path_to_dust3r  # noqa
from dust3r.utils.device import to_numpy, todevice  # noqa


@torch.no_grad()
def bruteforce_reciprocal_nns(A, B, device='cuda', block_size=None, dist='l2'):
    if isinstance(A, np.ndarray):
        A = torch.from_numpy(A).to(device)
    if isinstance(B, np.ndarray):
        B = torch.from_numpy(B).to(device)

    A = A.to(device)
    B = B.to(device)

    if dist == 'l2':
        dist_func = torch.cdist
        argmin = torch.min
    elif dist == 'dot':
        def dist_func(A, B):
            return A @ B.T

        def argmin(X, dim):
            sim, nn = torch.max(X, dim=dim)
            return sim.neg_(), nn
    else:
        raise ValueError(f'Unknown {dist=}')

    if block_size is None or len(A) * len(B) <= block_size**2:
        dists = dist_func(A, B)
        _, nn_A = argmin(dists, dim=1)
        _, nn_B = argmin(dists, dim=0)
    else:
        dis_A = torch.full((A.shape[0],), float('inf'), device=device, dtype=A.dtype)
        dis_B = torch.full((B.shape[0],), float('inf'), device=device, dtype=B.dtype)
        nn_A = torch.full((A.shape[0],), -1, device=device, dtype=torch.int64)
        nn_B = torch.full((B.shape[0],), -1, device=device, dtype=torch.int64)
        number_of_iteration_A = math.ceil(A.shape[0] / block_size)
        number_of_iteration_B = math.ceil(B.shape[0] / block_size)

        for i in range(number_of_iteration_A):
            A_i = A[i * block_size:(i + 1) * block_size]
            for j in range(number_of_iteration_B):
                B_j = B[j * block_size:(j + 1) * block_size]
                dists_blk = dist_func(A_i, B_j)  # A, B, 1
                # dists_blk = dists[i * block_size:(i+1)*block_size, j * block_size:(j+1)*block_size]
                min_A_i, argmin_A_i = argmin(dists_blk, dim=1)
                min_B_j, argmin_B_j = argmin(dists_blk, dim=0)

                col_mask = min_A_i < dis_A[i * block_size:(i + 1) * block_size]
                line_mask = min_B_j < dis_B[j * block_size:(j + 1) * block_size]

                dis_A[i * block_size:(i + 1) * block_size][col_mask] = min_A_i[col_mask]
                dis_B[j * block_size:(j + 1) * block_size][line_mask] = min_B_j[line_mask]

                nn_A[i * block_size:(i + 1) * block_size][col_mask] = argmin_A_i[col_mask] + (j * block_size)
                nn_B[j * block_size:(j + 1) * block_size][line_mask] = argmin_B_j[line_mask] + (i * block_size)
    nn_A = nn_A.cpu().numpy()
    nn_B = nn_B.cpu().numpy()
    return nn_A, nn_B


class cdistMatcher:
    def __init__(self, db_pts, device='cuda'):
        self.db_pts = db_pts.to(device)
        self.device = device

    def query(self, queries, k=1, **kw):
        assert k == 1
        if queries.numel() == 0:
            return None, []
        nnA, nnB = bruteforce_reciprocal_nns(queries, self.db_pts, device=self.device, **kw)
        dis = None
        return dis, nnA


def merge_corres(idx1, idx2, shape1=None, shape2=None, ret_xy=True, ret_index=False):
    assert idx1.dtype == idx2.dtype == np.int32

    # unique and sort along idx1
    corres = np.unique(np.c_[idx2, idx1].view(np.int64), return_index=ret_index)
    if ret_index:
        corres, indices = corres
    xy2, xy1 = corres[:, None].view(np.int32).T

    if ret_xy:
        assert shape1 and shape2
        xy1 = np.unravel_index(xy1, shape1)
        xy2 = np.unravel_index(xy2, shape2)
        if ret_xy != 'y_x':
            xy1 = xy1[0].base[:, ::-1]
            xy2 = xy2[0].base[:, ::-1]

    if ret_index:
        return xy1, xy2, indices
    return xy1, xy2


def fast_reciprocal_NNs(pts1, pts2, subsample_or_initxy1=8, ret_xy=True, pixel_tol=0, ret_basin=False,
                        device='cuda', **matcher_kw):
    H1, W1, DIM1 = pts1.shape
    H2, W2, DIM2 = pts2.shape
    assert DIM1 == DIM2

    pts1 = pts1.reshape(-1, DIM1)
    pts2 = pts2.reshape(-1, DIM2)

    if isinstance(subsample_or_initxy1, int) and pixel_tol == 0:
        S = subsample_or_initxy1
        y1, x1 = np.mgrid[S // 2:H1:S, S // 2:W1:S].reshape(2, -1)
        max_iter = 10
    else:
        x1, y1 = subsample_or_initxy1
        if isinstance(x1, torch.Tensor):
            x1 = x1.cpu().numpy()
        if isinstance(y1, torch.Tensor):
            y1 = y1.cpu().numpy()
        max_iter = 1

    xy1 = np.int32(np.unique(x1 + W1 * y1))  # make sure there's no doublons
    xy2 = np.full_like(xy1, -1)
    old_xy1 = xy1.copy()
    old_xy2 = xy2.copy()

    if 'dist' in matcher_kw or 'block_size' in matcher_kw \
            or (isinstance(device, str) and device.startswith('cuda')) \
            or (isinstance(device, torch.device) and device.type.startswith('cuda')):
        pts1 = pts1.to(device)
        pts2 = pts2.to(device)
        tree1 = cdistMatcher(pts1, device=device)
        tree2 = cdistMatcher(pts2, device=device)
    else:
        pts1, pts2 = to_numpy((pts1, pts2))
        tree1 = KDTree(pts1)
        tree2 = KDTree(pts2)

    notyet = np.ones(len(xy1), dtype=bool)
    basin = np.full((H1 * W1 + 1,), -1, dtype=np.int32) if ret_basin else None

    niter = 0
    # n_notyet = [len(notyet)]
    while notyet.any():
        _, xy2[notyet] = to_numpy(tree2.query(pts1[xy1[notyet]], **matcher_kw))
        if not ret_basin:
            notyet &= (old_xy2 != xy2)  # remove points that have converged

        _, xy1[notyet] = to_numpy(tree1.query(pts2[xy2[notyet]], **matcher_kw))
        if ret_basin:
            basin[old_xy1[notyet]] = xy1[notyet]
        notyet &= (old_xy1 != xy1)  # remove points that have converged

        # n_notyet.append(notyet.sum())
        niter += 1
        if niter >= max_iter:
            break

        old_xy2[:] = xy2
        old_xy1[:] = xy1

    # print('notyet_stats:', ' '.join(map(str, (n_notyet+[0]*10)[:max_iter])))

    if pixel_tol > 0:
        # in case we only want to match some specific points
        # and still have some way of checking reciprocity
        old_yx1 = np.unravel_index(old_xy1, (H1, W1))[0].base
        new_yx1 = np.unravel_index(xy1, (H1, W1))[0].base
        dis = np.linalg.norm(old_yx1 - new_yx1, axis=-1)
        converged = dis < pixel_tol
        if not isinstance(subsample_or_initxy1, int):
            xy1 = old_xy1  # replace new points by old ones
    else:
        converged = ~notyet  # converged correspondences

    # keep only unique correspondences, and sort on xy1
    xy1, xy2 = merge_corres(xy1[converged], xy2[converged], (H1, W1), (H2, W2), ret_xy=ret_xy)
    if ret_basin:
        return xy1, xy2, basin
    return xy1, xy2


def extract_correspondences_nonsym(A, B, confA, confB, subsample=8, device=None, ptmap_key='pred_desc', pixel_tol=0):
    if '3d' in ptmap_key:
        opt = dict(device='cpu', workers=32)
    else:
        opt = dict(device=device, dist='dot', block_size=2**13)

    # matching the two pairs
    idx1 = []
    idx2 = []
    # merge corres from opposite pairs
    HA, WA = A.shape[:2]
    HB, WB = B.shape[:2]
    if pixel_tol == 0:
        nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt)
        nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt)
    else:
        S = subsample
        yA, xA = np.mgrid[S // 2:HA:S, S // 2:WA:S].reshape(2, -1)
        yB, xB = np.mgrid[S // 2:HB:S, S // 2:WB:S].reshape(2, -1)

        nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=(xA, yA), ret_xy=False, pixel_tol=pixel_tol, **opt)
        nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=(xB, yB), ret_xy=False, pixel_tol=pixel_tol, **opt)

    idx1 = np.r_[nn1to2[0], nn2to1[1]]
    idx2 = np.r_[nn1to2[1], nn2to1[0]]

    c1 = confA.ravel()[idx1]
    c2 = confB.ravel()[idx2]

    xy1, xy2, idx = merge_corres(idx1, idx2, (HA, WA), (HB, WB), ret_xy=True, ret_index=True)
    conf = np.minimum(c1[idx], c2[idx])
    corres = (xy1.copy(), xy2.copy(), conf)
    return todevice(corres, device)