Spaces:
Sleeping
Sleeping
File size: 23,272 Bytes
e4bf056 fd89d5f e4bf056 270a9a7 e4bf056 270a9a7 e4bf056 8e3d0ca d1dbe71 e66346c 0332bda 2c5f88b 1139032 270a9a7 e4bf056 270a9a7 e4bf056 e685b72 e4bf056 1139032 46bebed 9059c91 46bebed e66346c 46bebed e66346c e4bf056 e66346c e4bf056 e66346c e4bf056 e66346c e4bf056 fd89d5f e4bf056 fd89d5f e4bf056 fd89d5f 270a9a7 8e3d0ca 1139032 2c5f88b 270a9a7 e4bf056 e66346c 2c5f88b e4bf056 e66346c 270a9a7 2c5f88b 270a9a7 2c5f88b 270a9a7 e4bf056 e66346c 270a9a7 e4bf056 e66346c 270a9a7 e4bf056 e66346c 8e3d0ca d1dbe71 e66346c 8e3d0ca 2c5f88b e66346c 270a9a7 2c5f88b e4bf056 270a9a7 e66346c 0332bda 2c5f88b 1139032 0332bda 2c5f88b 727fb54 2c5f88b 270a9a7 2c5f88b 727fb54 549d99a 2c5f88b 46bebed 549d99a d1dbe71 1139032 e66346c 1164fc6 e66346c 1164fc6 e66346c 1164fc6 e66346c 4f9c67e 1164fc6 4f9c67e e66346c 1139032 e66346c 2c5f88b 727fb54 2c5f88b 1139032 e66346c 1139032 2c5f88b 727fb54 2c5f88b 1139032 270a9a7 1139032 2c5f88b 1139032 e4bf056 e66346c 2c5f88b e66346c 270a9a7 e4bf056 2cc5b1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import os
import time
import torch
import numpy as np
import gradio as gr
import urllib.parse
import tempfile
import subprocess
from dust3r.losses import L21
from spann3r.model import Spann3R
from mast3r.model import AsymmetricMASt3R
from spann3r.datasets import Demo
from torch.utils.data import DataLoader
import cv2
import json
import glob
from dust3r.post_process import estimate_focal_knowing_depth
from mast3r.demo import get_reconstructed_scene
from scipy.spatial.transform import Rotation
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from PIL import Image
import open3d as o3d
from backend_utils import improved_multiway_registration, pts2normal, point2mesh, combine_and_clean_point_clouds
from gs_utils import point2gs
from pose_utils import solve_cemara
from gradio.helpers import Examples as GradioExamples
from gradio.utils import get_cache_folder
from pathlib import Path
import os
import shutil
import math
import zipfile
from pathlib import Path
# Default values
DEFAULT_CKPT_PATH = 'checkpoints/spann3r.pth'
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
DEFAULT_MAST3R_PATH = 'https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth'
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
OPENGL = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
class Examples(GradioExamples):
def __init__(self, *args, directory_name=None, **kwargs):
super().__init__(*args, **kwargs, _initiated_directly=False)
if directory_name is not None:
self.cached_folder = get_cache_folder() / directory_name
self.cached_file = Path(self.cached_folder) / "log.csv"
self.create()
def export_geometry(geometry, file_format='obj'):
"""
Export Open3D geometry (triangle mesh or point cloud) to a file.
Args:
geometry: Open3D geometry object (TriangleMesh or PointCloud)
file_format: str, output format ('obj', 'ply', 'pcd')
Returns:
str: Path to the exported file
Raises:
ValueError: If geometry type is not supported or file format is invalid
"""
# Validate geometry type
if not isinstance(geometry, (o3d.geometry.TriangleMesh, o3d.geometry.PointCloud)):
raise ValueError("Geometry must be either TriangleMesh or PointCloud")
# Validate and set file format
supported_formats = {
'obj': '.obj',
'ply': '.ply',
'pcd': '.pcd'
}
if file_format.lower() not in supported_formats:
raise ValueError(f"Unsupported file format. Supported formats: {list(supported_formats.keys())}")
# Create temporary file with appropriate extension
output_path = tempfile.mktemp(suffix=supported_formats[file_format.lower()])
# Create a copy of the geometry to avoid modifying the original
geometry_copy = geometry
# Apply rotation
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
transform = np.linalg.inv(OPENGL @ rot)
# Transform geometry
geometry_copy.transform(transform)
# Export based on geometry type and format
try:
if isinstance(geometry_copy, o3d.geometry.TriangleMesh):
if file_format.lower() == 'obj':
o3d.io.write_triangle_mesh(output_path, geometry_copy,
write_ascii=False, compressed=True)
elif file_format.lower() == 'ply':
o3d.io.write_triangle_mesh(output_path, geometry_copy,
write_ascii=False, compressed=True)
elif isinstance(geometry_copy, o3d.geometry.PointCloud):
if file_format.lower() == 'pcd':
o3d.io.write_point_cloud(output_path, geometry_copy,
write_ascii=False, compressed=True)
elif file_format.lower() == 'ply':
o3d.io.write_point_cloud(output_path, geometry_copy,
write_ascii=False, compressed=True)
else:
raise ValueError(f"Format {file_format} not supported for point clouds. Use 'ply' or 'pcd'")
return output_path
except Exception as e:
# Clean up temporary file if export fails
if os.path.exists(output_path):
os.remove(output_path)
raise RuntimeError(f"Failed to export geometry: {str(e)}")
def extract_frames(video_path: str, duration: float = 20.0, fps: float = 3.0) -> str:
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "%03d.jpg")
filter_complex = f"select='if(lt(t,{duration}),1,0)',fps={fps}"
command = [
"ffmpeg",
"-i", video_path,
"-vf", filter_complex,
"-vsync", "0",
output_path
]
subprocess.run(command, check=True)
return temp_dir
def load_ckpt(model_path_or_url, verbose=True):
if verbose:
print('... loading model from', model_path_or_url)
is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https')
if is_url:
ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose)
else:
ckpt = torch.load(model_path_or_url, map_location='cpu')
return ckpt
def load_model(ckpt_path, device):
model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH,
use_feat=False).to(device)
model.load_state_dict(load_ckpt(ckpt_path)['model'])
model.eval()
return model
model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
birefnet.to(DEFAULT_DEVICE)
birefnet.eval()
def extract_object(birefnet, image):
# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE)
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
return mask
def generate_mask(image: np.ndarray):
# Convert numpy array to PIL Image
pil_image = Image.fromarray((image * 255).astype(np.uint8))
# Extract object and get mask
mask = extract_object(birefnet, pil_image)
# Convert mask to numpy array
mask_np = np.array(mask) / 255.0
return mask_np
def center_pcd(pcd: o3d.geometry.PointCloud, normalize=False) -> o3d.geometry.PointCloud:
# Convert to numpy array
points = np.asarray(pcd.points)
# Compute centroid
centroid = np.mean(points, axis=0)
# Center the point cloud
centered_points = points - centroid
if normalize:
# Compute the maximum distance from the center
max_distance = np.max(np.linalg.norm(centered_points, axis=1))
# Normalize the point cloud
normalized_points = centered_points / max_distance
# Create a new point cloud with the normalized points
normalized_pcd = o3d.geometry.PointCloud()
normalized_pcd.points = o3d.utility.Vector3dVector(normalized_points)
# If the original point cloud has colors, normalize them too
if pcd.has_colors():
normalized_pcd.colors = pcd.colors
# If the original point cloud has normals, copy them
if pcd.has_normals():
normalized_pcd.normals = pcd.normals
return normalized_pcd
else:
pcd.points = o3d.utility.Vector3dVector(centered_points)
return pcd
def center_mesh(mesh: o3d.geometry.TriangleMesh, normalize=False) -> o3d.geometry.TriangleMesh:
# Convert to numpy array
vertices = np.asarray(mesh.vertices)
# Compute centroid
centroid = np.mean(vertices, axis=0)
# Center the mesh
centered_vertices = vertices - centroid
if normalize:
# Compute the maximum distance from the center
max_distance = np.max(np.linalg.norm(centered_vertices, axis=1))
# Normalize the mesh
normalized_vertices = centered_vertices / max_distance
# Create a new mesh with the normalized vertices
normalized_mesh = o3d.geometry.TriangleMesh()
normalized_mesh.vertices = o3d.utility.Vector3dVector(normalized_vertices)
normalized_mesh.triangles = mesh.triangles
# If the original mesh has vertex colors, copy them
if mesh.has_vertex_colors():
normalized_mesh.vertex_colors = mesh.vertex_colors
# If the original mesh has vertex normals, normalize them
if mesh.has_vertex_normals():
vertex_normals = np.asarray(mesh.vertex_normals)
normalized_vertex_normals = vertex_normals / np.linalg.norm(vertex_normals, axis=1, keepdims=True)
normalized_mesh.vertex_normals = o3d.utility.Vector3dVector(normalized_vertex_normals)
return normalized_mesh
else:
# Update the mesh with the centered vertices
mesh.vertices = o3d.utility.Vector3dVector(centered_vertices)
return mesh
def get_transform_json(H, W, focal, poses_all):
transform_dict = {
'w': W,
'h': H,
'fl_x': focal.item(),
'fl_y': focal.item(),
'cx': W/2,
'cy': H/2,
}
frames = []
for i, pose in enumerate(poses_all):
# CV2 GL format
pose[:3, 1] *= -1
pose[:3, 2] *= -1
frame = {
'w': W,
'h': H,
'fl_x': focal.item(),
'fl_y': focal.item(),
'cx': W/2,
'cy': H/2,
'file_path': f"images/{i:04d}.jpg",
"mask_path": f"masks/{i:04d}.png",
'transform_matrix': pose.tolist()
}
frames.append(frame)
transform_dict['frames'] = frames
return transform_dict
def organize_and_zip_output(images_all, masks_all, transform_json_path, output_dir=None):
"""
Organizes reconstruction outputs into a specific directory structure and creates a zip file.
Args:
images_all: List of numpy arrays containing images
masks_all: List of numpy arrays containing masks
transform_json_path: Path to the transform.json file
output_dir: Optional custom output directory name
Returns:
str: Path to the created zip file
"""
try:
# Create temporary directory with timestamp
timestamp = time.strftime("%Y%m%d_%H%M%S")
base_dir = output_dir or f"reconstruction_{timestamp}"
os.makedirs(base_dir, exist_ok=True)
# Create subdirectories
images_dir = os.path.join(base_dir, "images")
masks_dir = os.path.join(base_dir, "masks")
os.makedirs(images_dir, exist_ok=True)
os.makedirs(masks_dir, exist_ok=True)
# Save images
for i, image in enumerate(images_all):
image_path = os.path.join(images_dir, f"{i:04d}.jpg")
cv2.imwrite(image_path, (image * 255).astype(np.uint8)[..., ::-1], [int(cv2.IMWRITE_JPEG_QUALITY), 90])
# Save masks
for i, mask in enumerate(masks_all):
mask_path = os.path.join(masks_dir, f"{i:04d}.png")
cv2.imwrite(mask_path, (mask * 255).astype(np.uint8))
# Copy transform.json
shutil.copy2(transform_json_path, os.path.join(base_dir, "transforms.json"))
# Create zip file
zip_path = f"{base_dir}.zip"
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(base_dir):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, base_dir)
zipf.write(file_path, arcname)
return zip_path
finally:
# Clean up temporary directories and files
if os.path.exists(base_dir):
shutil.rmtree(base_dir)
if os.path.exists(transform_json_path):
os.remove(transform_json_path)
def get_keyframes(temp_dir: str, kf_every: int = 10):
"""
Select keyframes from a directory of extracted frames at specified intervals
Args:
temp_dir: Directory containing extracted frames (named as 001.jpg, 002.jpg, etc.)
kf_every: Select every Nth frame as a keyframe
Returns:
List[str]: Sorted list of paths to selected keyframe images
"""
# Get all jpg files in the directory
frame_paths = glob.glob(os.path.join(temp_dir, "*.jpg"))
# Sort frames by number to ensure correct order
frame_paths.sort(key=lambda x: int(Path(x).stem))
# Select keyframes at specified interval
keyframe_paths = frame_paths[::kf_every]
# Ensure we have at least 2 frames for reconstruction
if len(keyframe_paths) < 2:
if len(frame_paths) >= 2:
# If we have at least 2 frames, use first and last
keyframe_paths = [frame_paths[0], frame_paths[-1]]
else:
raise ValueError(f"Not enough frames found in {temp_dir}. Need at least 2 frames for reconstruction.")
return keyframe_paths
@torch.no_grad()
def reconstruct(video_path, conf_thresh, kf_every,
remove_background=False, enable_registration=True, output_3d_model=True):
# Extract frames from video
demo_path = extract_frames(video_path)
# Load dataset
dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
batch = next(iter(dataloader))
for view in batch:
view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True)
demo_name = os.path.basename(video_path)
print(f'Started reconstruction for {demo_name}')
start = time.time()
preds, preds_all = model.forward(batch)
end = time.time()
fps = len(batch) / (end - start)
print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
# Process results
pcds = []
poses_all = []
cameras_all = []
images_all = []
masks_all = []
last_focal = None
##### estimate focal length
_, H, W, _ = preds[0]['pts3d'].shape
pp = torch.tensor((W/2, H/2))
focal = estimate_focal_knowing_depth(preds[0]['pts3d'].cpu(), pp, focal_mode='weiszfeld')
print(f'Estimated focal of first camera: {focal.item()} (224x224)')
intrinsic = np.eye(3)
intrinsic[0, 0] = focal
intrinsic[1, 1] = focal
intrinsic[:2, 2] = pp
for j, view in enumerate(batch):
image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
image = (image + 1) / 2
mask = view['valid_mask'].cpu().numpy()[0]
pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
pts_normal = pts2normal(preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'][0]).cpu().numpy()
##### Solve PnP-RANSAC
u, v = np.meshgrid(np.arange(W), np.arange(H))
points_2d = np.stack((u, v), axis=-1)
dist_coeffs = np.zeros(4).astype(np.float32)
success, rotation_vector, translation_vector, inliers = cv2.solvePnPRansac(
pts.reshape(-1, 3).astype(np.float32),
points_2d.reshape(-1, 2).astype(np.float32),
intrinsic.astype(np.float32),
dist_coeffs)
rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
# Extrinsic parameters (4x4 matrix)
extrinsic_matrix = np.hstack((rotation_matrix, translation_vector.reshape(-1, 1)))
extrinsic_matrix = np.vstack((extrinsic_matrix, [0, 0, 0, 1]))
poses_all.append(np.linalg.inv(extrinsic_matrix))
conf = preds[j]['conf'][0].cpu().data.numpy()
conf_sig = (conf - 1) / conf
if remove_background:
mask = generate_mask(image)
else:
mask = np.ones_like(conf)
combined_mask = (conf_sig > conf_thresh) & (mask > 0.5)
camera, last_focal = solve_cemara(torch.tensor(pts), torch.tensor(conf_sig) > 0.001,
"cuda", focal=last_focal)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(pts[combined_mask])
pcd.colors = o3d.utility.Vector3dVector(image[combined_mask])
pcd.normals = o3d.utility.Vector3dVector(pts_normal[combined_mask])
pcds.append(pcd)
images_all.append(image)
masks_all.append(mask)
cameras_all.append(camera)
transform_dict = get_transform_json(H, W, focal, poses_all)
temp_json_file = tempfile.mktemp(suffix='.json')
with open(os.path.join(temp_json_file), 'w') as f:
json.dump(transform_dict, f, indent=4)
pcd_combined = combine_and_clean_point_clouds(pcds, voxel_size=0.001)
o3d_geometry = point2mesh(pcd_combined)
o3d_geometry_centered = center_mesh(o3d_geometry, normalize=True)
# Create coarse result
coarse_output_path = export_geometry(o3d_geometry_centered)
if enable_registration:
pcd_combined, _, _ = improved_multiway_registration(pcds, voxel_size=0.01)
pcd_combined = center_pcd(pcd_combined)
# zip_path = organize_and_zip_output(images_all, masks_all, temp_json_file)
if output_3d_model:
gs_output_path = tempfile.mktemp(suffix='.ply')
point2gs(gs_output_path, pcd_combined)
return coarse_output_path, [gs_output_path, temp_json_file]
else:
pcd_output_path = export_geometry(pcd_combined, file_format='ply')
return coarse_output_path, [pcd_output_path, temp_json_file]
example_videos = [os.path.join('./examples', f) for f in os.listdir('./examples') if f.endswith(('.mp4', '.webm'))]
# Update the Gradio interface with improved layout
with gr.Blocks(
title="StableRecon: 3D Reconstruction from Video",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
.md_feedback li {
margin-bottom: 0px !important;
}
""",
head="""
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
""",
) as iface:
gr.Markdown(
"""
# StableRecon: Making Video to 3D easy
<p align="center">
<a title="Github" href="https://github.com/Stable-X/StableRecon" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/StableRecon?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px; margin-bottom: 20px;">
<strong>📢 About StableRecon:</strong> This is an experimental open-source project building on <a href="https://github.com/naver/dust3r" target="_blank">dust3r</a> and <a href="https://github.com/HengyiWang/spann3r" target="_blank">spann3r</a>. We're exploring video-to-3D conversion, using spann3r for tracking and implementing our own backend and meshing. While it's a work in progress with plenty of room for improvement, we're excited to share it with the community. We welcome your feedback, especially on failure cases, as we continue to develop and refine this tool.
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Input Video", sources=["upload"])
with gr.Row():
conf_thresh = gr.Slider(0, 1, value=1e-3, label="Confidence Threshold")
kf_every = gr.Slider(1, 30, step=1, value=1, label="Keyframe Interval")
with gr.Row():
remove_background = gr.Checkbox(label="Remove Background", value=False)
enable_registration = gr.Checkbox(
label="Enable Refinement",
value=False,
info="Improves alignment but takes longer"
)
output_3d_model = gr.Checkbox(
label="Output Splat",
value=True,
info="Generate Splat (PLY) instead of Point Cloud (PLY)"
)
reconstruct_btn = gr.Button("Start Reconstruction")
with gr.Column(scale=2):
with gr.Tab("3D Models"):
with gr.Group():
initial_model = gr.Model3D(
label="Reconstructed Mesh",
display_mode="solid",
clear_color=[0.0, 0.0, 0.0, 0.0]
)
with gr.Group():
output_model = gr.File(
label="Reconstructed Results",
)
Examples(
fn=reconstruct,
examples=sorted([
os.path.join("examples", name)
for name in os.listdir(os.path.join("examples")) if name.endswith('.webm')
]),
inputs=[video_input],
outputs=[initial_model, output_model],
directory_name="examples_video",
cache_examples=False,
)
reconstruct_btn.click(
fn=reconstruct,
inputs=[video_input, conf_thresh, kf_every, remove_background, enable_registration, output_3d_model],
outputs=[initial_model, output_model]
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0") |