File size: 8,452 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).

import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
from tqdm import tqdm
import argparse
import PIL.Image
import numpy as np
import json
from datasets.habitat_sim.multiview_habitat_sim_generator import MultiviewHabitatSimGenerator, NoNaviguableSpaceError
from datasets.habitat_sim.paths import list_scenes_available
import cv2
import quaternion
import shutil

def generate_multiview_images_for_scene(scene_dataset_config_file,
                                        scene,
                                        navmesh,
                                        output_dir, 
                                        views_count,
                                        size, 
                                        exist_ok=False, 
                                        generate_depth=False,
                                        **kwargs):
    """
    Generate tuples of overlapping views for a given scene.
    generate_depth: generate depth images and camera parameters.
    """
    if os.path.exists(output_dir) and not exist_ok:
        print(f"Scene {scene}: data already generated. Ignoring generation.")
        return
    try:
        print(f"Scene {scene}: {size} multiview acquisitions to generate...")
        os.makedirs(output_dir, exist_ok=exist_ok)

        metadata_filename = os.path.join(output_dir, "metadata.json")

        metadata_template = dict(scene_dataset_config_file=scene_dataset_config_file,
            scene=scene, 
            navmesh=navmesh,
            views_count=views_count,
            size=size,
            generate_depth=generate_depth,
            **kwargs)
        metadata_template["multiviews"] = dict()

        if os.path.exists(metadata_filename):
            print("Metadata file already exists:", metadata_filename)
            print("Loading already generated metadata file...")
            with open(metadata_filename, "r") as f:
                metadata = json.load(f)

            for key in metadata_template.keys():
                if key != "multiviews":
                    assert metadata_template[key] == metadata[key], f"existing file is inconsistent with the input parameters:\nKey: {key}\nmetadata: {metadata[key]}\ntemplate: {metadata_template[key]}."
        else:
            print("No temporary file found. Starting generation from scratch...")
            metadata = metadata_template

        starting_id = len(metadata["multiviews"])
        print(f"Starting generation from index {starting_id}/{size}...")
        if starting_id >= size:
            print("Generation already done.")
            return

        generator = MultiviewHabitatSimGenerator(scene_dataset_config_file=scene_dataset_config_file,
                                                scene=scene,
                                                navmesh=navmesh,
                                                views_count = views_count,
                                                size = size,
                                                **kwargs)

        for idx in tqdm(range(starting_id, size)):
            # Generate / re-generate the observations
            try:
                data = generator[idx]
                observations = data["observations"]
                positions = data["positions"]
                orientations = data["orientations"]

                idx_label = f"{idx:08}"
                for oidx, observation in enumerate(observations):
                    observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1
                    # Color image saved using PIL
                    img = PIL.Image.fromarray(observation['color'][:,:,:3])
                    filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg")
                    img.save(filename)
                    if generate_depth:
                        # Depth image as EXR file
                        filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_depth.exr")
                        cv2.imwrite(filename, observation['depth'], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
                        # Camera parameters
                        camera_params = dict([(key, observation[key].tolist()) for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")])
                        filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_camera_params.json")
                        with open(filename, "w") as f:
                            json.dump(camera_params, f)
                metadata["multiviews"][idx_label] = {"positions": positions.tolist(),
                                                    "orientations": orientations.tolist(),
                                                    "covisibility_ratios": data["covisibility_ratios"].tolist(),
                                                    "valid_fractions": data["valid_fractions"].tolist(),
                                                    "pairwise_visibility_ratios": data["pairwise_visibility_ratios"].tolist()}
            except RecursionError:
                print("Recursion error: unable to sample observations for this scene. We will stop there.")
                break

            # Regularly save a temporary metadata file, in case we need to restart the generation
            if idx % 10 == 0:
                with open(metadata_filename, "w") as f:
                    json.dump(metadata, f)

        # Save metadata
        with open(metadata_filename, "w") as f:
            json.dump(metadata, f)

        generator.close()
    except NoNaviguableSpaceError:
        pass

def create_commandline(scene_data, generate_depth, exist_ok=False):
    """
    Create a commandline string to generate a scene.
    """
    def my_formatting(val):
        if val is None or val == "":
            return '""'
        else:
            return val
    commandline = f"""python {__file__} --scene {my_formatting(scene_data.scene)} 
    --scene_dataset_config_file {my_formatting(scene_data.scene_dataset_config_file)} 
    --navmesh {my_formatting(scene_data.navmesh)} 
    --output_dir {my_formatting(scene_data.output_dir)} 
    --generate_depth {int(generate_depth)} 
    --exist_ok {int(exist_ok)}
    """
    commandline = " ".join(commandline.split())
    return commandline

if __name__ == "__main__":
    os.umask(2)

    parser = argparse.ArgumentParser(description="""Example of use -- listing commands to generate data for scenes available:
    > python datasets/habitat_sim/generate_multiview_habitat_images.py --list_commands
    """)
    
    parser.add_argument("--output_dir", type=str, required=True)
    parser.add_argument("--list_commands", action='store_true', help="list commandlines to run if true")
    parser.add_argument("--scene", type=str, default="")
    parser.add_argument("--scene_dataset_config_file", type=str, default="")
    parser.add_argument("--navmesh", type=str, default="")
    
    parser.add_argument("--generate_depth", type=int, default=1)
    parser.add_argument("--exist_ok", type=int, default=0)

    kwargs = dict(resolution=(256,256), hfov=60, views_count = 5, size=200, minimum_covisibility=0.1)

    args = parser.parse_args()
    generate_depth=bool(args.generate_depth)
    exist_ok = bool(args.exist_ok)

    if args.list_commands:
        # Listing scenes available...
        scenes_data = list_scenes_available(base_output_dir=args.output_dir)
        
        for scene_data in scenes_data:
            print(create_commandline(scene_data, generate_depth=generate_depth, exist_ok=exist_ok), file=open("generate_multiview_images.sh", "a"))
    else:
        if args.scene == "" or args.output_dir == "":
            print("Missing scene or output dir argument!")
            print(parser.format_help())
        else:
            generate_multiview_images_for_scene(scene=args.scene,
                                                scene_dataset_config_file = args.scene_dataset_config_file,
                                                navmesh = args.navmesh,
                                                output_dir = args.output_dir,
                                                exist_ok=exist_ok,
                                                generate_depth=generate_depth,
                                                **kwargs)