Spaces:
Sleeping
Sleeping
File size: 6,802 Bytes
e4bf056 82b898c a5130f4 e4bf056 a5130f4 e4bf056 a5130f4 e4bf056 a5130f4 82b898c a5130f4 e4bf056 a5130f4 e4bf056 a5130f4 e4bf056 a5130f4 e4bf056 a5130f4 e4bf056 a5130f4 e4bf056 82b898c e4bf056 a5130f4 e4bf056 82b898c e4bf056 a5130f4 e4bf056 a5130f4 e4bf056 a5130f4 82b898c a5130f4 e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import time
import torch
import argparse
import numpy as np
import open3d as o3d
import os.path as osp
from dust3r.losses import L21
from spann3r.model import Spann3R
from dust3r.inference import inference
from dust3r.utils.geometry import geotrf
from dust3r.image_pairs import make_pairs
from spann3r.loss import Regr3D_t_ScaleShiftInv
from spann3r.datasets import *
from torch.utils.data import DataLoader
from spann3r.tools.eval_recon import accuracy, completion
from spann3r.tools.vis import render_frames, find_render_cam, vis_pred_and_imgs
from pose_utils import solve_cemara
from backend_utils import improved_multiway_registration, pts2normal, point2mesh, combine_and_clean_point_clouds
def get_args_parser():
parser = argparse.ArgumentParser('Spann3R demo', add_help=False)
parser.add_argument('--save_path', type=str, default='./output/demo/', help='Path to experiment folder')
parser.add_argument('--demo_path', type=str, default='./examples/s00567', help='Path to experiment folder')
parser.add_argument('--ckpt_path', type=str, default='./checkpoints/spann3r.pth', help='ckpt path')
parser.add_argument('--scenegraph_type', type=str, default='complete', help='scenegraph type')
parser.add_argument('--offline', action='store_true', help='offline reconstruction')
parser.add_argument('--device', type=str, default='cuda:0', help='device')
parser.add_argument('--conf_thresh', type=float, default=1e-3, help='confidence threshold')
parser.add_argument('--kf_every', type=int, default=10, help='map every kf_every frames')
parser.add_argument('--vis', action='store_true', help='visualize')
parser.add_argument('--voxel_size', type=float, default=0.004, help='voxel size for multiway registration')
return parser
import tempfile
import subprocess
def extract_frames(video_path: str, duration: float = 20.0, fps: float = 3.0) -> str:
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "%03d.jpg")
filter_complex = f"select='if(lt(t,{duration}),1,0)',fps={fps}"
command = [
"ffmpeg",
"-i", video_path,
"-vf", filter_complex,
"-vsync", "0",
output_path
]
subprocess.run(command, check=True)
return temp_dir
@torch.no_grad()
def main(args):
workspace = args.save_path
os.makedirs(workspace, exist_ok=True)
##### Load model
model = Spann3R(dus3r_name='./checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth',
use_feat=False).to(args.device)
model.load_state_dict(torch.load(args.ckpt_path)['model'])
model.eval()
if args.demo_path.endswith('.mp4') or args.demo_path.endswith('.avi') or args.demo_path.endswith('.webm'):
args.demo_path = extract_frames(args.demo_path)
args.kf_every = 1
##### Load dataset
dataset = Demo(ROOT=args.demo_path, resolution=224, full_video=True, kf_every=args.kf_every)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
batch = dataloader.__iter__().__next__()
##### Inference
for view in batch:
view['img'] = view['img'].to(args.device, non_blocking=True)
demo_name = args.demo_path.split("/")[-1]
print(f'Started reconstruction for {demo_name}')
if args.offline:
imgs_all = []
for j, view in enumerate(batch):
img = view['img']
imgs_all.append(
dict(
img=img,
true_shape=torch.tensor(img.shape[2:]).unsqueeze(0),
idx=j,
instance=str(j)
)
)
start = time.time()
pairs = make_pairs(imgs_all, scene_graph=args.scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, model.dust3r, args.device, batch_size=2, verbose=True)
preds, preds_all, idx_used = model.offline_reconstruction(batch, output)
end = time.time()
ordered_batch = [batch[i] for i in idx_used]
else:
start = time.time()
preds, preds_all = model.forward(batch)
end = time.time()
ordered_batch = batch
fps = len(batch) / (end - start)
print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
##### Save results
save_demo_path = osp.join(workspace, demo_name)
os.makedirs(save_demo_path, exist_ok=True)
pts_all = []
pts_normal_all = []
pts_gt_all = []
images_all = []
masks_all = []
conf_sig_all = []
cameras_all = []
last_focal = None
for j, view in enumerate(ordered_batch):
image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
mask = view['valid_mask'].cpu().numpy()[0]
pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
pts_normal = pts2normal(preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'][0]).cpu().numpy()
conf = preds[j]['conf'][0].cpu().data.numpy()
conf_sig = (conf - 1) / conf
pts_gt = view['pts3d'].cpu().numpy()[0]
camera, last_focal, depth_map = solve_cemara(torch.tensor(pts), torch.tensor(conf_sig) > args.conf_thresh,
args.device, focal=last_focal)
pts_scale = depth_map / last_focal
images_all.append((image[None, ...] + 1.0)/2.0)
pts_all.append(pts[None, ...])
pts_normal_all.append(pts_normal[None, ...])
pts_gt_all.append(pts_gt[None, ...])
pts_scale_all.append(pts_scale[None, ...])
masks_all.append(mask[None, ...])
conf_sig_all.append(conf_sig[None, ...])
images_all = np.concatenate(images_all, axis=0)
pts_all = np.concatenate(pts_all, axis=0)
pts_normal_all = np.concatenate(pts_normal_all, axis=0)
pts_gt_all = np.concatenate(pts_gt_all, axis=0)
masks_all = np.concatenate(masks_all, axis=0)
conf_sig_all = np.concatenate(conf_sig_all, axis=0)
# Create point clouds for multiway registration
pcds = []
for j in range(len(pts_all)):
pcd = o3d.geometry.PointCloud()
mask = conf_sig_all[j] > args.conf_thresh
pcd.points = o3d.utility.Vector3dVector(pts_all[j][mask])
pcd.colors = o3d.utility.Vector3dVector(images_all[j][mask])
pcd.normals = o3d.utility.Vector3dVector(pts_normal_all[j][mask])
pcds.append(pcd)
print("Performing global registration...")
pcd_combined, _, _ = improved_multiway_registration(pcds, voxel_size=0.001)
# pcd_combined = combine_and_clean_point_clouds(transformed_pcds, voxel_size=args.voxel_size * 0.1)
mesh_recon = point2mesh(pcd_combined)
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
main(args) |