Spaces:
Sleeping
Sleeping
File size: 42,201 Bytes
2caa1bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R Sparse Global Alignement
# --------------------------------------------------------
from tqdm import tqdm
import roma
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
from collections import namedtuple
from functools import lru_cache
from scipy import sparse as sp
import copy
from mast3r.utils.misc import mkdir_for, hash_md5
from mast3r.cloud_opt.utils.losses import gamma_loss
from mast3r.cloud_opt.utils.schedules import linear_schedule, cosine_schedule
from mast3r.fast_nn import fast_reciprocal_NNs, merge_corres
import mast3r.utils.path_to_dust3r # noqa
from dust3r.utils.geometry import inv, geotrf # noqa
from dust3r.utils.device import to_cpu, to_numpy, todevice # noqa
from dust3r.post_process import estimate_focal_knowing_depth # noqa
from dust3r.optim_factory import adjust_learning_rate_by_lr # noqa
from dust3r.viz import SceneViz
class SparseGA():
def __init__(self, img_paths, pairs_in, res_fine, anchors, canonical_paths=None):
def fetch_img(im):
def torgb(x): return (x[0].permute(1, 2, 0).numpy() * .5 + .5).clip(min=0., max=1.)
for im1, im2 in pairs_in:
if im1['instance'] == im:
return torgb(im1['img'])
if im2['instance'] == im:
return torgb(im2['img'])
self.canonical_paths = canonical_paths
self.img_paths = img_paths
self.imgs = [fetch_img(img) for img in img_paths]
self.intrinsics = res_fine['intrinsics']
self.cam2w = res_fine['cam2w']
self.depthmaps = res_fine['depthmaps']
self.pts3d = res_fine['pts3d']
self.pts3d_colors = []
self.working_device = self.cam2w.device
for i in range(len(self.imgs)):
im = self.imgs[i]
x, y = anchors[i][0][..., :2].detach().cpu().numpy().T
self.pts3d_colors.append(im[y, x])
assert self.pts3d_colors[-1].shape == self.pts3d[i].shape
self.n_imgs = len(self.imgs)
def get_focals(self):
return torch.tensor([ff[0, 0] for ff in self.intrinsics]).to(self.working_device)
def get_principal_points(self):
return torch.stack([ff[:2, -1] for ff in self.intrinsics]).to(self.working_device)
def get_im_poses(self):
return self.cam2w
def get_sparse_pts3d(self):
return self.pts3d
def get_dense_pts3d(self, clean_depth=True, subsample=8):
assert self.canonical_paths, 'cache_path is required for dense 3d points'
device = self.cam2w.device
confs = []
base_focals = []
anchors = {}
for i, canon_path in enumerate(self.canonical_paths):
(canon, canon2, conf), focal = torch.load(canon_path, map_location=device)
confs.append(conf)
base_focals.append(focal)
H, W = conf.shape
pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device)
idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample)
anchors[i] = (pixels, idxs[i], offsets[i])
# densify sparse depthmaps
pts3d, depthmaps = make_pts3d(anchors, self.intrinsics, self.cam2w, [
d.ravel() for d in self.depthmaps], base_focals=base_focals, ret_depth=True)
return pts3d, depthmaps, confs
def get_pts3d_colors(self):
return self.pts3d_colors
def get_depthmaps(self):
return self.depthmaps
def get_masks(self):
return [slice(None, None) for _ in range(len(self.imgs))]
def show(self, show_cams=True):
pts3d, _, confs = self.get_dense_pts3d()
show_reconstruction(self.imgs, self.intrinsics if show_cams else None, self.cam2w,
[p.clip(min=-50, max=50) for p in pts3d],
masks=[c > 1 for c in confs])
def convert_dust3r_pairs_naming(imgs, pairs_in):
for pair_id in range(len(pairs_in)):
for i in range(2):
pairs_in[pair_id][i]['instance'] = imgs[pairs_in[pair_id][i]['idx']]
return pairs_in
def sparse_global_alignment(imgs, pairs_in, cache_path, model, subsample=8, desc_conf='desc_conf',
device='cuda', dtype=torch.float32, shared_intrinsics=False, **kw):
""" Sparse alignment with MASt3R
imgs: list of image paths
cache_path: path where to dump temporary files (str)
lr1, niter1: learning rate and #iterations for coarse global alignment (3D matching)
lr2, niter2: learning rate and #iterations for refinement (2D reproj error)
lora_depth: smart dimensionality reduction with depthmaps
"""
# Convert pair naming convention from dust3r to mast3r
pairs_in = convert_dust3r_pairs_naming(imgs, pairs_in)
# forward pass
pairs, cache_path = forward_mast3r(pairs_in, model,
cache_path=cache_path, subsample=subsample,
desc_conf=desc_conf, device=device)
# extract canonical pointmaps
tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21 = \
prepare_canonical_data(imgs, pairs, subsample, cache_path=cache_path, mode='avg-angle', device=device)
# compute minimal spanning tree
mst = compute_min_spanning_tree(pairwise_scores)
# remove all edges not in the spanning tree?
# min_spanning_tree = {(imgs[i],imgs[j]) for i,j in mst[1]}
# tmp_pairs = {(a,b):v for (a,b),v in tmp_pairs.items() if {(a,b),(b,a)} & min_spanning_tree}
# smartly combine all useful data
imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21 = \
condense_data(imgs, tmp_pairs, canonical_views, preds_21, dtype)
imgs, res_coarse, res_fine = sparse_scene_optimizer(
imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21, canonical_paths, mst,
shared_intrinsics=shared_intrinsics, cache_path=cache_path, device=device, dtype=dtype, **kw)
return SparseGA(imgs, pairs_in, res_fine or res_coarse, anchors, canonical_paths)
def sparse_scene_optimizer(imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d,
preds_21, canonical_paths, mst, cache_path,
lr1=0.2, niter1=500, loss1=gamma_loss(1.1),
lr2=0.02, niter2=500, loss2=gamma_loss(0.4),
lossd=gamma_loss(1.1),
opt_pp=True, opt_depth=True,
schedule=cosine_schedule, depth_mode='add', exp_depth=False,
lora_depth=False, # dict(k=96, gamma=15, min_norm=.5),
shared_intrinsics=False,
init={}, device='cuda', dtype=torch.float32,
matching_conf_thr=5., loss_dust3r_w=0.01,
verbose=True, dbg=()):
init = copy.deepcopy(init)
# extrinsic parameters
vec0001 = torch.tensor((0, 0, 0, 1), dtype=dtype, device=device)
quats = [nn.Parameter(vec0001.clone()) for _ in range(len(imgs))]
trans = [nn.Parameter(torch.zeros(3, device=device, dtype=dtype)) for _ in range(len(imgs))]
# initialize
ones = torch.ones((len(imgs), 1), device=device, dtype=dtype)
median_depths = torch.ones(len(imgs), device=device, dtype=dtype)
for img in imgs:
idx = imgs.index(img)
init_values = init.setdefault(img, {})
if verbose and init_values:
print(f' >> initializing img=...{img[-25:]} [{idx}] for {set(init_values)}')
K = init_values.get('intrinsics')
if K is not None:
K = K.detach()
focal = K[:2, :2].diag().mean()
pp = K[:2, 2]
base_focals[idx] = focal
pps[idx] = pp
pps[idx] /= imsizes[idx] # default principal_point would be (0.5, 0.5)
depth = init_values.get('depthmap')
if depth is not None:
core_depth[idx] = depth.detach()
median_depths[idx] = med_depth = core_depth[idx].median()
core_depth[idx] /= med_depth
cam2w = init_values.get('cam2w')
if cam2w is not None:
rot = cam2w[:3, :3].detach()
cam_center = cam2w[:3, 3].detach()
quats[idx].data[:] = roma.rotmat_to_unitquat(rot)
trans_offset = med_depth * torch.cat((imsizes[idx] / base_focals[idx] * (0.5 - pps[idx]), ones[:1, 0]))
trans[idx].data[:] = cam_center + rot @ trans_offset
del rot
assert False, 'inverse kinematic chain not yet implemented'
# intrinsics parameters
if shared_intrinsics:
# Optimize a single set of intrinsics for all cameras. Use averages as init.
confs = torch.stack([torch.load(pth)[0][2].mean() for pth in canonical_paths]).to(pps)
weighting = confs / confs.sum()
pp = nn.Parameter((weighting @ pps).to(dtype))
pps = [pp for _ in range(len(imgs))]
focal_m = weighting @ base_focals
log_focal = nn.Parameter(focal_m.view(1).log().to(dtype))
log_focals = [log_focal for _ in range(len(imgs))]
else:
pps = [nn.Parameter(pp.to(dtype)) for pp in pps]
log_focals = [nn.Parameter(f.view(1).log().to(dtype)) for f in base_focals]
diags = imsizes.float().norm(dim=1)
min_focals = 0.25 * diags # diag = 1.2~1.4*max(W,H) => beta >= 1/(2*1.2*tan(fov/2)) ~= 0.26
max_focals = 10 * diags
assert len(mst[1]) == len(pps) - 1
def make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth):
# make intrinsics
focals = torch.cat(log_focals).exp().clip(min=min_focals, max=max_focals)
pps = torch.stack(pps)
K = torch.eye(3, dtype=dtype, device=device)[None].expand(len(imgs), 3, 3).clone()
K[:, 0, 0] = K[:, 1, 1] = focals
K[:, 0:2, 2] = pps * imsizes
if trans is None:
return K
# security! optimization is always trying to crush the scale down
sizes = torch.cat(log_sizes).exp()
global_scaling = 1 / sizes.min()
# compute distance of camera to focal plane
# tan(fov) = W/2 / focal
z_cameras = sizes * median_depths * focals / base_focals
# make extrinsic
rel_cam2cam = torch.eye(4, dtype=dtype, device=device)[None].expand(len(imgs), 4, 4).clone()
rel_cam2cam[:, :3, :3] = roma.unitquat_to_rotmat(F.normalize(torch.stack(quats), dim=1))
rel_cam2cam[:, :3, 3] = torch.stack(trans)
# camera are defined as a kinematic chain
tmp_cam2w = [None] * len(K)
tmp_cam2w[mst[0]] = rel_cam2cam[mst[0]]
for i, j in mst[1]:
# i is the cam_i_to_world reference, j is the relative pose = cam_j_to_cam_i
tmp_cam2w[j] = tmp_cam2w[i] @ rel_cam2cam[j]
tmp_cam2w = torch.stack(tmp_cam2w)
# smart reparameterizaton of cameras
trans_offset = z_cameras.unsqueeze(1) * torch.cat((imsizes / focals.unsqueeze(1) * (0.5 - pps), ones), dim=-1)
new_trans = global_scaling * (tmp_cam2w[:, :3, 3:4] - tmp_cam2w[:, :3, :3] @ trans_offset.unsqueeze(-1))
cam2w = torch.cat((torch.cat((tmp_cam2w[:, :3, :3], new_trans), dim=2),
vec0001.view(1, 1, 4).expand(len(K), 1, 4)), dim=1)
depthmaps = []
for i in range(len(imgs)):
core_depth_img = core_depth[i]
if exp_depth:
core_depth_img = core_depth_img.exp()
if lora_depth: # compute core_depth as a low-rank decomposition of 3d points
core_depth_img = lora_depth_proj[i] @ core_depth_img
if depth_mode == 'add':
core_depth_img = z_cameras[i] + (core_depth_img - 1) * (median_depths[i] * sizes[i])
elif depth_mode == 'mul':
core_depth_img = z_cameras[i] * core_depth_img
else:
raise ValueError(f'Bad {depth_mode=}')
depthmaps.append(global_scaling * core_depth_img)
return K, (inv(cam2w), cam2w), depthmaps
K = make_K_cam_depth(log_focals, pps, None, None, None, None)
if shared_intrinsics:
print('init focal (shared) = ', to_numpy(K[0, 0, 0]).round(2))
else:
print('init focals =', to_numpy(K[:, 0, 0]))
# spectral low-rank projection of depthmaps
if lora_depth:
core_depth, lora_depth_proj = spectral_projection_of_depthmaps(
imgs, K, core_depth, subsample, cache_path=cache_path, **lora_depth)
if exp_depth:
core_depth = [d.clip(min=1e-4).log() for d in core_depth]
core_depth = [nn.Parameter(d.ravel().to(dtype)) for d in core_depth]
log_sizes = [nn.Parameter(torch.zeros(1, dtype=dtype, device=device)) for _ in range(len(imgs))]
# Fetch img slices
_, confs_sum, imgs_slices = corres
# Define which pairs are fine to use with matching
def matching_check(x): return x.max() > matching_conf_thr
is_matching_ok = {}
for s in imgs_slices:
is_matching_ok[s.img1, s.img2] = matching_check(s.confs)
# Prepare slices and corres for losses
dust3r_slices = [s for s in imgs_slices if not is_matching_ok[s.img1, s.img2]]
loss3d_slices = [s for s in imgs_slices if is_matching_ok[s.img1, s.img2]]
cleaned_corres2d = []
for cci, (img1, pix1, confs, confsum, imgs_slices) in enumerate(corres2d):
cf_sum = 0
pix1_filtered = []
confs_filtered = []
curstep = 0
cleaned_slices = []
for img2, slice2 in imgs_slices:
if is_matching_ok[img1, img2]:
tslice = slice(curstep, curstep + slice2.stop - slice2.start, slice2.step)
pix1_filtered.append(pix1[tslice])
confs_filtered.append(confs[tslice])
cleaned_slices.append((img2, slice2))
curstep += slice2.stop - slice2.start
if pix1_filtered != []:
pix1_filtered = torch.cat(pix1_filtered)
confs_filtered = torch.cat(confs_filtered)
cf_sum = confs_filtered.sum()
cleaned_corres2d.append((img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices))
def loss_dust3r(cam2w, pts3d, pix_loss):
# In the case no correspondence could be established, fallback to DUSt3R GA regression loss formulation (sparsified)
loss = 0.
cf_sum = 0.
for s in dust3r_slices:
if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'):
continue
# fallback to dust3r regression
tgt_pts, tgt_confs = preds_21[imgs[s.img2]][imgs[s.img1]]
tgt_pts = geotrf(cam2w[s.img2], tgt_pts)
cf_sum += tgt_confs.sum()
loss += tgt_confs @ pix_loss(pts3d[s.img1], tgt_pts)
return loss / cf_sum if cf_sum != 0. else 0.
def loss_3d(K, w2cam, pts3d, pix_loss):
# For each correspondence, we have two 3D points (one for each image of the pair).
# For each 3D point, we have 2 reproj errors
if any(v.get('freeze') for v in init.values()):
pts3d_1 = []
pts3d_2 = []
confs = []
for s in loss3d_slices:
if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'):
continue
pts3d_1.append(pts3d[s.img1][s.slice1])
pts3d_2.append(pts3d[s.img2][s.slice2])
confs.append(s.confs)
else:
pts3d_1 = [pts3d[s.img1][s.slice1] for s in loss3d_slices]
pts3d_2 = [pts3d[s.img2][s.slice2] for s in loss3d_slices]
confs = [s.confs for s in loss3d_slices]
if pts3d_1 != []:
confs = torch.cat(confs)
pts3d_1 = torch.cat(pts3d_1)
pts3d_2 = torch.cat(pts3d_2)
loss = confs @ pix_loss(pts3d_1, pts3d_2)
cf_sum = confs.sum()
else:
loss = 0.
cf_sum = 1.
return loss / cf_sum
def loss_2d(K, w2cam, pts3d, pix_loss):
# For each correspondence, we have two 3D points (one for each image of the pair).
# For each 3D point, we have 2 reproj errors
proj_matrix = K @ w2cam[:, :3]
loss = npix = 0
for img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices in cleaned_corres2d:
if init[imgs[img1]].get('freeze', 0) >= 1:
continue # no need
pts3d_in_img1 = [pts3d[img2][slice2] for img2, slice2 in cleaned_slices]
if pts3d_in_img1 != []:
pts3d_in_img1 = torch.cat(pts3d_in_img1)
loss += confs_filtered @ pix_loss(pix1_filtered, reproj2d(proj_matrix[img1], pts3d_in_img1))
npix += confs_filtered.sum()
return loss / npix if npix != 0 else 0.
def optimize_loop(loss_func, lr_base, niter, pix_loss, lr_end=0):
# create optimizer
params = pps + log_focals + quats + trans + log_sizes + core_depth
optimizer = torch.optim.Adam(params, lr=1, weight_decay=0, betas=(0.9, 0.9))
ploss = pix_loss if 'meta' in repr(pix_loss) else (lambda a: pix_loss)
with tqdm(total=niter) as bar:
for iter in range(niter or 1):
K, (w2cam, cam2w), depthmaps = make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth)
pts3d = make_pts3d(anchors, K, cam2w, depthmaps, base_focals=base_focals)
if niter == 0:
break
alpha = (iter / niter)
lr = schedule(alpha, lr_base, lr_end)
adjust_learning_rate_by_lr(optimizer, lr)
pix_loss = ploss(1 - alpha)
optimizer.zero_grad()
loss = loss_func(K, w2cam, pts3d, pix_loss) + loss_dust3r_w * loss_dust3r(cam2w, pts3d, lossd)
loss.backward()
optimizer.step()
# make sure the pose remains well optimizable
for i in range(len(imgs)):
quats[i].data[:] /= quats[i].data.norm()
loss = float(loss)
if loss != loss:
break # NaN loss
bar.set_postfix_str(f'{lr=:.4f}, {loss=:.3f}')
bar.update(1)
if niter:
print(f'>> final loss = {loss}')
return dict(intrinsics=K.detach(), cam2w=cam2w.detach(),
depthmaps=[d.detach() for d in depthmaps], pts3d=[p.detach() for p in pts3d])
# at start, don't optimize 3d points
for i, img in enumerate(imgs):
trainable = not (init[img].get('freeze'))
pps[i].requires_grad_(False)
log_focals[i].requires_grad_(False)
quats[i].requires_grad_(trainable)
trans[i].requires_grad_(trainable)
log_sizes[i].requires_grad_(trainable)
core_depth[i].requires_grad_(False)
res_coarse = optimize_loop(loss_3d, lr_base=lr1, niter=niter1, pix_loss=loss1)
res_fine = None
if niter2:
# now we can optimize 3d points
for i, img in enumerate(imgs):
if init[img].get('freeze', 0) >= 1:
continue
pps[i].requires_grad_(bool(opt_pp))
log_focals[i].requires_grad_(True)
core_depth[i].requires_grad_(opt_depth)
# refinement with 2d reproj
res_fine = optimize_loop(loss_2d, lr_base=lr2, niter=niter2, pix_loss=loss2)
K = make_K_cam_depth(log_focals, pps, None, None, None, None)
if shared_intrinsics:
print('Final focal (shared) = ', to_numpy(K[0, 0, 0]).round(2))
else:
print('Final focals =', to_numpy(K[:, 0, 0]))
return imgs, res_coarse, res_fine
@lru_cache
def mask110(device, dtype):
return torch.tensor((1, 1, 0), device=device, dtype=dtype)
def proj3d(inv_K, pixels, z):
if pixels.shape[-1] == 2:
pixels = torch.cat((pixels, torch.ones_like(pixels[..., :1])), dim=-1)
return z.unsqueeze(-1) * (pixels * inv_K.diag() + inv_K[:, 2] * mask110(z.device, z.dtype))
def make_pts3d(anchors, K, cam2w, depthmaps, base_focals=None, ret_depth=False):
focals = K[:, 0, 0]
invK = inv(K)
all_pts3d = []
depth_out = []
for img, (pixels, idxs, offsets) in anchors.items():
# from depthmaps to 3d points
if base_focals is None:
pass
else:
# compensate for focal
# depth + depth * (offset - 1) * base_focal / focal
# = depth * (1 + (offset - 1) * (base_focal / focal))
offsets = 1 + (offsets - 1) * (base_focals[img] / focals[img])
pts3d = proj3d(invK[img], pixels, depthmaps[img][idxs] * offsets)
if ret_depth:
depth_out.append(pts3d[..., 2]) # before camera rotation
# rotate to world coordinate
pts3d = geotrf(cam2w[img], pts3d)
all_pts3d.append(pts3d)
if ret_depth:
return all_pts3d, depth_out
return all_pts3d
def make_dense_pts3d(intrinsics, cam2w, depthmaps, canonical_paths, subsample, device='cuda'):
base_focals = []
anchors = {}
confs = []
for i, canon_path in enumerate(canonical_paths):
(canon, canon2, conf), focal = torch.load(canon_path, map_location=device)
confs.append(conf)
base_focals.append(focal)
H, W = conf.shape
pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device)
idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample)
anchors[i] = (pixels, idxs[i], offsets[i])
# densify sparse depthmaps
pts3d, depthmaps_out = make_pts3d(anchors, intrinsics, cam2w, [
d.ravel() for d in depthmaps], base_focals=base_focals, ret_depth=True)
return pts3d, depthmaps_out, confs
@torch.no_grad()
def forward_mast3r(pairs, model, cache_path, desc_conf='desc_conf',
device='cuda', subsample=8, **matching_kw):
res_paths = {}
for img1, img2 in tqdm(pairs):
idx1 = hash_md5(img1['instance'])
idx2 = hash_md5(img2['instance'])
path1 = cache_path + f'/forward/{idx1}/{idx2}.pth'
path2 = cache_path + f'/forward/{idx2}/{idx1}.pth'
path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx1}-{idx2}.pth'
path_corres2 = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx2}-{idx1}.pth'
if os.path.isfile(path_corres2) and not os.path.isfile(path_corres):
score, (xy1, xy2, confs) = torch.load(path_corres2)
torch.save((score, (xy2, xy1, confs)), path_corres)
if not all(os.path.isfile(p) for p in (path1, path2, path_corres)):
if model is None:
continue
res = symmetric_inference(model, img1, img2, device=device)
X11, X21, X22, X12 = [r['pts3d'][0] for r in res]
C11, C21, C22, C12 = [r['conf'][0] for r in res]
descs = [r['desc'][0] for r in res]
qonfs = [r[desc_conf][0] for r in res]
# save
torch.save(to_cpu((X11, C11, X21, C21)), mkdir_for(path1))
torch.save(to_cpu((X22, C22, X12, C12)), mkdir_for(path2))
# perform reciprocal matching
corres = extract_correspondences(descs, qonfs, device=device, subsample=subsample)
conf_score = (C11.mean() * C12.mean() * C21.mean() * C22.mean()).sqrt().sqrt()
matching_score = (float(conf_score), float(corres[2].sum()), len(corres[2]))
if cache_path is not None:
torch.save((matching_score, corres), mkdir_for(path_corres))
res_paths[img1['instance'], img2['instance']] = (path1, path2), path_corres
del model
torch.cuda.empty_cache()
return res_paths, cache_path
def symmetric_inference(model, img1, img2, device):
shape1 = torch.from_numpy(img1['true_shape']).to(device, non_blocking=True)
shape2 = torch.from_numpy(img2['true_shape']).to(device, non_blocking=True)
img1 = img1['img'].to(device, non_blocking=True)
img2 = img2['img'].to(device, non_blocking=True)
# compute encoder only once
feat1, feat2, pos1, pos2 = model._encode_image_pairs(img1, img2, shape1, shape2)
def decoder(feat1, feat2, pos1, pos2, shape1, shape2):
dec1, dec2 = model._decoder(feat1, pos1, feat2, pos2)
with torch.cuda.amp.autocast(enabled=False):
res1 = model._downstream_head(1, [tok.float() for tok in dec1], shape1)
res2 = model._downstream_head(2, [tok.float() for tok in dec2], shape2)
return res1, res2
# decoder 1-2
res11, res21 = decoder(feat1, feat2, pos1, pos2, shape1, shape2)
# decoder 2-1
res22, res12 = decoder(feat2, feat1, pos2, pos1, shape2, shape1)
return (res11, res21, res22, res12)
def extract_correspondences(feats, qonfs, subsample=8, device=None, ptmap_key='pred_desc'):
feat11, feat21, feat22, feat12 = feats
qonf11, qonf21, qonf22, qonf12 = qonfs
assert feat11.shape[:2] == feat12.shape[:2] == qonf11.shape == qonf12.shape
assert feat21.shape[:2] == feat22.shape[:2] == qonf21.shape == qonf22.shape
if '3d' in ptmap_key:
opt = dict(device='cpu', workers=32)
else:
opt = dict(device=device, dist='dot', block_size=2**13)
# matching the two pairs
idx1 = []
idx2 = []
qonf1 = []
qonf2 = []
# TODO add non symmetric / pixel_tol options
for A, B, QA, QB in [(feat11, feat21, qonf11.cpu(), qonf21.cpu()),
(feat12, feat22, qonf12.cpu(), qonf22.cpu())]:
nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt)
nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt)
idx1.append(np.r_[nn1to2[0], nn2to1[1]])
idx2.append(np.r_[nn1to2[1], nn2to1[0]])
qonf1.append(QA.ravel()[idx1[-1]])
qonf2.append(QB.ravel()[idx2[-1]])
# merge corres from opposite pairs
H1, W1 = feat11.shape[:2]
H2, W2 = feat22.shape[:2]
cat = np.concatenate
xy1, xy2, idx = merge_corres(cat(idx1), cat(idx2), (H1, W1), (H2, W2), ret_xy=True, ret_index=True)
corres = (xy1.copy(), xy2.copy(), np.sqrt(cat(qonf1)[idx] * cat(qonf2)[idx]))
return todevice(corres, device)
@torch.no_grad()
def prepare_canonical_data(imgs, tmp_pairs, subsample, order_imgs=False, min_conf_thr=0,
cache_path=None, device='cuda', **kw):
canonical_views = {}
pairwise_scores = torch.zeros((len(imgs), len(imgs)), device=device)
canonical_paths = []
preds_21 = {}
for img in tqdm(imgs):
if cache_path:
cache = os.path.join(cache_path, 'canon_views', hash_md5(img) + f'_{subsample=}_{kw=}.pth')
canonical_paths.append(cache)
try:
(canon, canon2, cconf), focal = torch.load(cache, map_location=device)
except IOError:
# cache does not exist yet, we create it!
canon = focal = None
# collect all pred1
n_pairs = sum((img in pair) for pair in tmp_pairs)
ptmaps11 = None
pixels = {}
n = 0
for (img1, img2), ((path1, path2), path_corres) in tmp_pairs.items():
score = None
if img == img1:
X, C, X2, C2 = torch.load(path1, map_location=device)
score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr)
pixels[img2] = xy1, confs
if img not in preds_21:
preds_21[img] = {}
# Subsample preds_21
preds_21[img][img2] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel()
if img == img2:
X, C, X2, C2 = torch.load(path2, map_location=device)
score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr)
pixels[img1] = xy2, confs
if img not in preds_21:
preds_21[img] = {}
preds_21[img][img1] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel()
if score is not None:
i, j = imgs.index(img1), imgs.index(img2)
# score = score[0]
# score = np.log1p(score[2])
score = score[2]
pairwise_scores[i, j] = score
pairwise_scores[j, i] = score
if canon is not None:
continue
if ptmaps11 is None:
H, W = C.shape
ptmaps11 = torch.empty((n_pairs, H, W, 3), device=device)
confs11 = torch.empty((n_pairs, H, W), device=device)
ptmaps11[n] = X
confs11[n] = C
n += 1
if canon is None:
canon, canon2, cconf = canonical_view(ptmaps11, confs11, subsample, **kw)
del ptmaps11
del confs11
# compute focals
H, W = canon.shape[:2]
pp = torch.tensor([W / 2, H / 2], device=device)
if focal is None:
focal = estimate_focal_knowing_depth(canon[None], pp, focal_mode='weiszfeld', min_focal=0.5, max_focal=3.5)
if cache:
torch.save(to_cpu(((canon, canon2, cconf), focal)), mkdir_for(cache))
# extract depth offsets with correspondences
core_depth = canon[subsample // 2::subsample, subsample // 2::subsample, 2]
idxs, offsets = anchor_depth_offsets(canon2, pixels, subsample=subsample)
canonical_views[img] = (pp, (H, W), focal.view(1), core_depth, pixels, idxs, offsets)
return tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21
def load_corres(path_corres, device, min_conf_thr):
score, (xy1, xy2, confs) = torch.load(path_corres, map_location=device)
valid = confs > min_conf_thr if min_conf_thr else slice(None)
# valid = (xy1 > 0).all(dim=1) & (xy2 > 0).all(dim=1) & (xy1 < 512).all(dim=1) & (xy2 < 512).all(dim=1)
# print(f'keeping {valid.sum()} / {len(valid)} correspondences')
return score, (xy1[valid], xy2[valid], confs[valid])
PairOfSlices = namedtuple(
'ImgPair', 'img1, slice1, pix1, anchor_idxs1, img2, slice2, pix2, anchor_idxs2, confs, confs_sum')
def condense_data(imgs, tmp_paths, canonical_views, preds_21, dtype=torch.float32):
# aggregate all data properly
set_imgs = set(imgs)
principal_points = []
shapes = []
focals = []
core_depth = []
img_anchors = {}
tmp_pixels = {}
for idx1, img1 in enumerate(imgs):
# load stuff
pp, shape, focal, anchors, pixels_confs, idxs, offsets = canonical_views[img1]
principal_points.append(pp)
shapes.append(shape)
focals.append(focal)
core_depth.append(anchors)
img_uv1 = []
img_idxs = []
img_offs = []
cur_n = [0]
for img2, (pixels, match_confs) in pixels_confs.items():
if img2 not in set_imgs:
continue
assert len(pixels) == len(idxs[img2]) == len(offsets[img2])
img_uv1.append(torch.cat((pixels, torch.ones_like(pixels[:, :1])), dim=-1))
img_idxs.append(idxs[img2])
img_offs.append(offsets[img2])
cur_n.append(cur_n[-1] + len(pixels))
# store the position of 3d points
tmp_pixels[img1, img2] = pixels.to(dtype), match_confs.to(dtype), slice(*cur_n[-2:])
img_anchors[idx1] = (torch.cat(img_uv1), torch.cat(img_idxs), torch.cat(img_offs))
all_confs = []
imgs_slices = []
corres2d = {img: [] for img in range(len(imgs))}
for img1, img2 in tmp_paths:
try:
pix1, confs1, slice1 = tmp_pixels[img1, img2]
pix2, confs2, slice2 = tmp_pixels[img2, img1]
except KeyError:
continue
img1 = imgs.index(img1)
img2 = imgs.index(img2)
confs = (confs1 * confs2).sqrt()
# prepare for loss_3d
all_confs.append(confs)
anchor_idxs1 = canonical_views[imgs[img1]][5][imgs[img2]]
anchor_idxs2 = canonical_views[imgs[img2]][5][imgs[img1]]
imgs_slices.append(PairOfSlices(img1, slice1, pix1, anchor_idxs1,
img2, slice2, pix2, anchor_idxs2,
confs, float(confs.sum())))
# prepare for loss_2d
corres2d[img1].append((pix1, confs, img2, slice2))
corres2d[img2].append((pix2, confs, img1, slice1))
all_confs = torch.cat(all_confs)
corres = (all_confs, float(all_confs.sum()), imgs_slices)
def aggreg_matches(img1, list_matches):
pix1, confs, img2, slice2 = zip(*list_matches)
all_pix1 = torch.cat(pix1).to(dtype)
all_confs = torch.cat(confs).to(dtype)
return img1, all_pix1, all_confs, float(all_confs.sum()), [(j, sl2) for j, sl2 in zip(img2, slice2)]
corres2d = [aggreg_matches(img, m) for img, m in corres2d.items()]
imsizes = torch.tensor([(W, H) for H, W in shapes], device=pp.device) # (W,H)
principal_points = torch.stack(principal_points)
focals = torch.cat(focals)
# Subsample preds_21
subsamp_preds_21 = {}
for imk, imv in preds_21.items():
subsamp_preds_21[imk] = {}
for im2k, (pred, conf) in preds_21[imk].items():
idxs = img_anchors[imgs.index(im2k)][1]
subsamp_preds_21[imk][im2k] = (pred[idxs], conf[idxs]) # anchors subsample
return imsizes, principal_points, focals, core_depth, img_anchors, corres, corres2d, subsamp_preds_21
def canonical_view(ptmaps11, confs11, subsample, mode='avg-angle'):
assert len(ptmaps11) == len(confs11) > 0, 'not a single view1 for img={i}'
# canonical pointmap is just a weighted average
confs11 = confs11.unsqueeze(-1) - 0.999
canon = (confs11 * ptmaps11).sum(0) / confs11.sum(0)
canon_depth = ptmaps11[..., 2].unsqueeze(1)
S = slice(subsample // 2, None, subsample)
center_depth = canon_depth[:, :, S, S]
center_depth = torch.clip(center_depth, min=torch.finfo(center_depth.dtype).eps)
stacked_depth = F.pixel_unshuffle(canon_depth, subsample)
stacked_confs = F.pixel_unshuffle(confs11[:, None, :, :, 0], subsample)
if mode == 'avg-reldepth':
rel_depth = stacked_depth / center_depth
stacked_canon = (stacked_confs * rel_depth).sum(dim=0) / stacked_confs.sum(dim=0)
canon2 = F.pixel_shuffle(stacked_canon.unsqueeze(0), subsample).squeeze()
elif mode == 'avg-angle':
xy = ptmaps11[..., 0:2].permute(0, 3, 1, 2)
stacked_xy = F.pixel_unshuffle(xy, subsample)
B, _, H, W = stacked_xy.shape
stacked_radius = (stacked_xy.view(B, 2, -1, H, W) - xy[:, :, None, S, S]).norm(dim=1)
stacked_radius.clip_(min=1e-8)
stacked_angle = torch.arctan((stacked_depth - center_depth) / stacked_radius)
avg_angle = (stacked_confs * stacked_angle).sum(dim=0) / stacked_confs.sum(dim=0)
# back to depth
stacked_depth = stacked_radius.mean(dim=0) * torch.tan(avg_angle)
canon2 = F.pixel_shuffle((1 + stacked_depth / canon[S, S, 2]).unsqueeze(0), subsample).squeeze()
else:
raise ValueError(f'bad {mode=}')
confs = (confs11.square().sum(dim=0) / confs11.sum(dim=0)).squeeze()
return canon, canon2, confs
def anchor_depth_offsets(canon_depth, pixels, subsample=8):
device = canon_depth.device
# create a 2D grid of anchor 3D points
H1, W1 = canon_depth.shape
yx = np.mgrid[subsample // 2:H1:subsample, subsample // 2:W1:subsample]
H2, W2 = yx.shape[1:]
cy, cx = yx.reshape(2, -1)
core_depth = canon_depth[cy, cx]
assert (core_depth > 0).all()
# slave 3d points (attached to core 3d points)
core_idxs = {} # core_idxs[img2] = {corr_idx:core_idx}
core_offs = {} # core_offs[img2] = {corr_idx:3d_offset}
for img2, (xy1, _confs) in pixels.items():
px, py = xy1.long().T
# find nearest anchor == block quantization
core_idx = (py // subsample) * W2 + (px // subsample)
core_idxs[img2] = core_idx.to(device)
# compute relative depth offsets w.r.t. anchors
ref_z = core_depth[core_idx]
pts_z = canon_depth[py, px]
offset = pts_z / ref_z
core_offs[img2] = offset.detach().to(device)
return core_idxs, core_offs
def spectral_clustering(graph, k=None, normalized_cuts=False):
graph.fill_diagonal_(0)
# graph laplacian
degrees = graph.sum(dim=-1)
laplacian = torch.diag(degrees) - graph
if normalized_cuts:
i_inv = torch.diag(degrees.sqrt().reciprocal())
laplacian = i_inv @ laplacian @ i_inv
# compute eigenvectors!
eigval, eigvec = torch.linalg.eigh(laplacian)
return eigval[:k], eigvec[:, :k]
def sim_func(p1, p2, gamma):
diff = (p1 - p2).norm(dim=-1)
avg_depth = (p1[:, :, 2] + p2[:, :, 2])
rel_distance = diff / avg_depth
sim = torch.exp(-gamma * rel_distance.square())
return sim
def backproj(K, depthmap, subsample):
H, W = depthmap.shape
uv = np.mgrid[subsample // 2:subsample * W:subsample, subsample // 2:subsample * H:subsample].T.reshape(H, W, 2)
xyz = depthmap.unsqueeze(-1) * geotrf(inv(K), todevice(uv, K.device), ncol=3)
return xyz
def spectral_projection_depth(K, depthmap, subsample, k=64, cache_path='',
normalized_cuts=True, gamma=7, min_norm=5):
try:
if cache_path:
cache_path = cache_path + f'_{k=}_norm={normalized_cuts}_{gamma=}.pth'
lora_proj = torch.load(cache_path, map_location=K.device)
except IOError:
# reconstruct 3d points in camera coordinates
xyz = backproj(K, depthmap, subsample)
# compute all distances
xyz = xyz.reshape(-1, 3)
graph = sim_func(xyz[:, None], xyz[None, :], gamma=gamma)
_, lora_proj = spectral_clustering(graph, k, normalized_cuts=normalized_cuts)
if cache_path:
torch.save(lora_proj.cpu(), mkdir_for(cache_path))
lora_proj, coeffs = lora_encode_normed(lora_proj, depthmap.ravel(), min_norm=min_norm)
# depthmap ~= lora_proj @ coeffs
return coeffs, lora_proj
def lora_encode_normed(lora_proj, x, min_norm, global_norm=False):
# encode the pointmap
coeffs = torch.linalg.pinv(lora_proj) @ x
# rectify the norm of basis vector to be ~ equal
if coeffs.ndim == 1:
coeffs = coeffs[:, None]
if global_norm:
lora_proj *= coeffs[1:].norm() * min_norm / coeffs.shape[1]
elif min_norm:
lora_proj *= coeffs.norm(dim=1).clip(min=min_norm)
# can have rounding errors here!
coeffs = (torch.linalg.pinv(lora_proj.double()) @ x.double()).float()
return lora_proj.detach(), coeffs.detach()
@torch.no_grad()
def spectral_projection_of_depthmaps(imgs, intrinsics, depthmaps, subsample, cache_path=None, **kw):
# recover 3d points
core_depth = []
lora_proj = []
for i, img in enumerate(tqdm(imgs)):
cache = os.path.join(cache_path, 'lora_depth', hash_md5(img)) if cache_path else None
depth, proj = spectral_projection_depth(intrinsics[i], depthmaps[i], subsample,
cache_path=cache, **kw)
core_depth.append(depth)
lora_proj.append(proj)
return core_depth, lora_proj
def reproj2d(Trf, pts3d):
res = (pts3d @ Trf[:3, :3].transpose(-1, -2)) + Trf[:3, 3]
clipped_z = res[:, 2:3].clip(min=1e-3) # make sure we don't have nans!
uv = res[:, 0:2] / clipped_z
return uv.clip(min=-1000, max=2000)
def bfs(tree, start_node):
order, predecessors = sp.csgraph.breadth_first_order(tree, start_node, directed=False)
ranks = np.arange(len(order))
ranks[order] = ranks.copy()
return ranks, predecessors
def compute_min_spanning_tree(pws):
sparse_graph = sp.dok_array(pws.shape)
for i, j in pws.nonzero().cpu().tolist():
sparse_graph[i, j] = -float(pws[i, j])
msp = sp.csgraph.minimum_spanning_tree(sparse_graph)
# now reorder the oriented edges, starting from the central point
ranks1, _ = bfs(msp, 0)
ranks2, _ = bfs(msp, ranks1.argmax())
ranks1, _ = bfs(msp, ranks2.argmax())
# this is the point farther from any leaf
root = np.minimum(ranks1, ranks2).argmax()
# find the ordered list of edges that describe the tree
order, predecessors = sp.csgraph.breadth_first_order(msp, root, directed=False)
order = order[1:] # root not do not have a predecessor
edges = [(predecessors[i], i) for i in order]
return root, edges
def show_reconstruction(shapes_or_imgs, K, cam2w, pts3d, gt_cam2w=None, gt_K=None, cam_size=None, masks=None, **kw):
viz = SceneViz()
cc = cam2w[:, :3, 3]
cs = cam_size or float(torch.cdist(cc, cc).fill_diagonal_(np.inf).min(dim=0).values.median())
colors = 64 + np.random.randint(255 - 64, size=(len(cam2w), 3))
if isinstance(shapes_or_imgs, np.ndarray) and shapes_or_imgs.ndim == 2:
cam_kws = dict(imsizes=shapes_or_imgs[:, ::-1], cam_size=cs)
else:
imgs = shapes_or_imgs
cam_kws = dict(images=imgs, cam_size=cs)
if K is not None:
viz.add_cameras(to_numpy(cam2w), to_numpy(K), colors=colors, **cam_kws)
if gt_cam2w is not None:
if gt_K is None:
gt_K = K
viz.add_cameras(to_numpy(gt_cam2w), to_numpy(gt_K), colors=colors, marker='o', **cam_kws)
if pts3d is not None:
for i, p in enumerate(pts3d):
if not len(p):
continue
if masks is None:
viz.add_pointcloud(to_numpy(p), color=tuple(colors[i].tolist()))
else:
viz.add_pointcloud(to_numpy(p), mask=masks[i], color=imgs[i])
viz.show(**kw)
|