File size: 5,482 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import cv2
import json
import numpy as np
import os.path as osp
from collections import deque

from dust3r.utils.image import imread_cv2
from .base_many_view_dataset import BaseManyViewDataset


class DTU(BaseManyViewDataset):
    def __init__(self, num_seq=49, num_frames=5, 
                 min_thresh=10, max_thresh=30, 
                 test_id=None, full_video=False, 
                 sample_pairs=False, kf_every=1, 
                 *args, ROOT, **kwargs):
        self.ROOT = ROOT
        super().__init__(*args, **kwargs)
        
        self.num_seq = num_seq
        self.num_frames = num_frames
        self.max_thresh = max_thresh
        self.min_thresh = min_thresh
        self.test_id = test_id
        self.full_video = full_video
        self.kf_every = kf_every
        self.sample_pairs = sample_pairs
    
        # load all scenes
        self.load_all_scenes(ROOT)
    
    def __len__(self):
        return len(self.scene_list) * self.num_seq

    def load_all_scenes(self, base_dir):
        
        if self.test_id is None:
            self.scene_list = os.listdir(osp.join(base_dir))
            print(f"Found {len(self.scene_list)} scenes in split {self.split}")
            
        else:
            if isinstance(self.test_id, list):
                self.scene_list = self.test_id
            else:
                self.scene_list = [self.test_id]
                
            print(f"Test_id: {self.test_id}")
    
    def load_cam_mvsnet(self, file, interval_scale=1):
        """ read camera txt file """
        cam = np.zeros((2, 4, 4))
        words = file.read().split()
        # read extrinsic
        for i in range(0, 4):
            for j in range(0, 4):
                extrinsic_index = 4 * i + j + 1
                cam[0][i][j] = words[extrinsic_index]

        # read intrinsic
        for i in range(0, 3):
            for j in range(0, 3):
                intrinsic_index = 3 * i + j + 18
                cam[1][i][j] = words[intrinsic_index]

        if len(words) == 29:
            cam[1][3][0] = words[27]
            cam[1][3][1] = float(words[28]) * interval_scale
            cam[1][3][2] = 192
            cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
        elif len(words) == 30:
            cam[1][3][0] = words[27]
            cam[1][3][1] = float(words[28]) * interval_scale
            cam[1][3][2] = words[29]
            cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
        elif len(words) == 31:
            cam[1][3][0] = words[27]
            cam[1][3][1] = float(words[28]) * interval_scale
            cam[1][3][2] = words[29]
            cam[1][3][3] = words[30]
        else:
            cam[1][3][0] = 0
            cam[1][3][1] = 0
            cam[1][3][2] = 0
            cam[1][3][3] = 0
        
        
        extrinsic = cam[0].astype(np.float32)
        intrinsic = cam[1].astype(np.float32)

        return intrinsic, extrinsic
    
    def _get_views(self, idx, resolution, rng): 
        scene_id = self.scene_list[idx // self.num_seq]
        seq_id = idx % self.num_seq

        print('Scene ID:', scene_id)
        
        image_path = osp.join(self.ROOT, scene_id, 'images')
        depth_path = osp.join(self.ROOT, scene_id, 'depths')
        mask_path = osp.join(self.ROOT, scene_id, 'binary_masks')
        cam_path = osp.join(self.ROOT, scene_id, 'cams')
        pairs_path = osp.join(self.ROOT, scene_id, 'pair.txt')

        

        if not self.full_video:
            img_idxs = self.sample_pairs(pairs_path, seq_id)
        else:
            img_idxs = sorted(os.listdir(image_path))
            img_idxs = self.sample_frame_idx(img_idxs, rng, full_video=self.full_video)
        
        views = []
        imgs_idxs = deque(img_idxs)

        while len(imgs_idxs) > 0:
            im_idx = imgs_idxs.pop()
            impath = osp.join(image_path, im_idx)
            depthpath = osp.join(depth_path, im_idx.replace('.jpg', '.npy'))
            campath = osp.join(cam_path, im_idx.replace('.jpg', '_cam.txt'))
            maskpath = osp.join(mask_path, im_idx.replace('.jpg', '.png'))

            rgb_image = imread_cv2(impath)
            depthmap = np.load(depthpath)
            depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0)

            mask = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED)/255.0
            mask = mask.astype(np.float32)

            mask[mask>0.5] = 1.0
            mask[mask<0.5] = 0.0

            mask = cv2.resize(mask, (depthmap.shape[1], depthmap.shape[0]), interpolation=cv2.INTER_NEAREST)
            kernel = np.ones((10, 10), np.uint8)  # Define the erosion kernel
            mask = cv2.erode(mask, kernel, iterations=1)
            depthmap = depthmap * mask
            
            cur_intrinsics, camera_pose = self.load_cam_mvsnet(open(campath, 'r'))
            intrinsics = cur_intrinsics[:3, :3]
            camera_pose = np.linalg.inv(camera_pose)

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
            
            views.append(dict(
                img=rgb_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset='dtu',
                label=osp.join(scene_id, im_idx),
                instance=osp.split(impath)[1],
            ))

        return views