File size: 4,434 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import cv2
import json
import numpy as np
import os.path as osp
from collections import deque

from dust3r.utils.image import imread_cv2
from .base_many_view_dataset import BaseManyViewDataset


class NRGBD(BaseManyViewDataset):
    def __init__(self, num_seq=1, num_frames=5, 
                 min_thresh=10, max_thresh=100, 
                 test_id=None, full_video=False, 
                 tuple_path=None, seq_id=None,
                 kf_every=1, *args, ROOT, **kwargs):
        
        self.ROOT = ROOT
        super().__init__(*args, **kwargs)
        self.num_seq = num_seq
        self.num_frames = num_frames
        self.max_thresh = max_thresh
        self.min_thresh = min_thresh
        self.test_id = test_id
        self.full_video = full_video
        self.kf_every = kf_every
        self.seq_id = seq_id

         # load all scenes
        self.load_all_tuples(tuple_path)
        self.load_all_scenes(ROOT)
    
    def __len__(self):
        if self.tuple_list is not None:
            return len(self.tuple_list)
        return len(self.scene_list) * self.num_seq

    def load_all_tuples(self, tuple_path):
        if tuple_path is not None:
            with open(tuple_path) as f:
                self.tuple_list = f.read().splitlines()
        
        else:
            self.tuple_list = None
    
    def load_all_scenes(self, base_dir):
        
        scenes = os.listdir(base_dir)
        
        if self.test_id is not None:
            self.scene_list = [self.test_id]
        
        else:
            self.scene_list = scenes
        
        print(f"Found {len(self.scene_list)} sequences in split {self.split}")
    
    def load_poses(self, path):
        file = open(path, "r")
        lines = file.readlines()
        file.close()
        poses = []
        valid = []
        lines_per_matrix = 4
        for i in range(0, len(lines), lines_per_matrix):
            if 'nan' in lines[i]:
                valid.append(False)
                poses.append(np.eye(4, 4, dtype=np.float32).tolist())
            else:
                valid.append(True)
                pose_floats = [[float(x) for x in line.split()] for line in lines[i:i+lines_per_matrix]]
                poses.append(pose_floats)

        return np.array(poses, dtype=np.float32), valid


    
    def _get_views(self, idx, resolution, rng):

        if self.tuple_list is not None:
            line = self.tuple_list[idx].split(" ")
            scene_id = line[0]
            img_idxs = line[1:]
        
        else:
            scene_id = self.scene_list[idx // self.num_seq]

            num_files = len(os.listdir(os.path.join(self.ROOT, scene_id, 'images')))
            img_idxs = [f'{i}' for i in range(num_files)]
            img_idxs = self.sample_frame_idx(img_idxs, rng, full_video=self.full_video)


        fx, fy, cx, cy = 554.2562584220408, 554.2562584220408, 320, 240
        intrinsics_ = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
        
        posepath = osp.join(self.ROOT, scene_id, f'poses.txt')
        camera_poses, valids = self.load_poses(posepath)

        imgs_idxs = deque(img_idxs)
        views = []

        while len(imgs_idxs) > 0:
            im_idx = imgs_idxs.popleft()

            impath = osp.join(self.ROOT, scene_id, 'images', f'img{im_idx}.png')
            depthpath = osp.join(self.ROOT, scene_id, 'depth',f'depth{im_idx}.png')

            rgb_image = imread_cv2(impath)
            depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
            depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0
            depthmap[depthmap>10] = 0
            depthmap[depthmap<1e-3] = 0

            rgb_image = cv2.resize(rgb_image, (depthmap.shape[1], depthmap.shape[0]))

            camera_pose = camera_poses[int(im_idx)]
            # gl to cv
            camera_pose[:, 1:3] *= -1.0

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics_, resolution, rng=rng, info=impath)

            views.append(dict(
                img=rgb_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset='nrgbd',
                label=osp.join(scene_id, im_idx),
                instance=osp.split(impath)[1],
            ))

        return views