File size: 16,745 Bytes
e4bf056
 
 
 
 
fd89d5f
e4bf056
 
 
 
 
 
 
 
8e3d0ca
 
 
d1dbe71
e66346c
0332bda
2c5f88b
1139032
 
 
e4bf056
35b1ef9
e4bf056
 
 
 
 
 
 
 
1139032
 
 
 
 
 
 
 
0332bda
 
e66346c
 
 
 
 
 
 
0332bda
e66346c
 
 
 
 
e4bf056
 
e66346c
 
 
e4bf056
 
 
e66346c
 
e4bf056
 
e66346c
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d5f
 
 
 
 
 
 
 
 
 
 
e4bf056
 
 
fd89d5f
 
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d5f
8e3d0ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5f88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4bf056
e66346c
2c5f88b
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e66346c
2c5f88b
 
e4bf056
 
e66346c
e4bf056
e66346c
e4bf056
e66346c
8e3d0ca
 
 
d1dbe71
e66346c
 
8e3d0ca
2c5f88b
 
 
e66346c
 
 
 
 
2c5f88b
 
e4bf056
e66346c
0332bda
2c5f88b
1139032
0332bda
2c5f88b
 
 
727fb54
 
2c5f88b
 
727fb54
 
2c5f88b
727fb54
2c5f88b
727fb54
 
d1dbe71
 
 
 
1139032
 
e66346c
 
1164fc6
e66346c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164fc6
e66346c
1164fc6
 
e66346c
 
 
 
 
4f9c67e
 
1164fc6
4f9c67e
e66346c
 
 
 
1139032
e66346c
 
 
 
 
2c5f88b
 
 
 
 
 
 
 
727fb54
2c5f88b
1139032
e66346c
 
1139032
 
2c5f88b
727fb54
2c5f88b
 
 
1139032
 
727fb54
 
 
 
1139032
 
 
 
 
 
 
 
 
2c5f88b
1139032
 
 
e4bf056
e66346c
 
2c5f88b
 
e66346c
e4bf056
 
2cc5b1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import os
import time
import torch
import numpy as np
import gradio as gr
import urllib.parse
import tempfile
import subprocess
from dust3r.losses import L21
from spann3r.model import Spann3R
from spann3r.datasets import Demo
from torch.utils.data import DataLoader
import trimesh
from scipy.spatial.transform import Rotation
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from PIL import Image
import open3d as o3d
from backend_utils import improved_multiway_registration, pts2normal, point2mesh, combine_and_clean_point_clouds
from gs_utils import point2gs
from pose_utils import solve_cemara
from gradio.helpers import Examples as GradioExamples
from gradio.utils import get_cache_folder
from pathlib import Path
# Default values
DEFAULT_CKPT_PATH = './checkpoints/spann3r.pth'
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'

OPENGL = np.array([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])

class Examples(GradioExamples):
    def __init__(self, *args, directory_name=None, **kwargs):
        super().__init__(*args, **kwargs, _initiated_directly=False)
        if directory_name is not None:
            self.cached_folder = get_cache_folder() / directory_name
            self.cached_file = Path(self.cached_folder) / "log.csv"
            self.create()

def export_geometry(geometry):
    output_path = tempfile.mktemp(suffix='.obj')

    # Apply rotation
    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    transform = np.linalg.inv(OPENGL @ rot)
    geometry.transform(transform)

    o3d.io.write_triangle_mesh(output_path, geometry, write_ascii=False, compressed=True)
    
    return output_path


def extract_frames(video_path: str, duration: float = 20.0, fps: float = 3.0) -> str:
    temp_dir = tempfile.mkdtemp()
    output_path = os.path.join(temp_dir, "%03d.jpg")
    
    filter_complex = f"select='if(lt(t,{duration}),1,0)',fps={fps}"

    command = [
        "ffmpeg",
        "-i", video_path,
        "-vf", filter_complex,
        "-vsync", "0",
        output_path
    ]
    
    subprocess.run(command, check=True)
    return temp_dir

def cat_meshes(meshes):
    vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes])
    n_vertices = np.cumsum([0]+[len(v) for v in vertices])
    for i in range(len(faces)):
        faces[i][:] += n_vertices[i]

    vertices = np.concatenate(vertices)
    colors = np.concatenate(colors)
    faces = np.concatenate(faces)
    return dict(vertices=vertices, face_colors=colors, faces=faces)

def load_ckpt(model_path_or_url, verbose=True):
    if verbose:
        print('... loading model from', model_path_or_url)
    is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https')
    
    if is_url:
        ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose)
    else:
        ckpt = torch.load(model_path_or_url, map_location='cpu')
    return ckpt

def load_model(ckpt_path, device):
    model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH, 
                    use_feat=False).to(device)
    
    model.load_state_dict(load_ckpt(ckpt_path)['model'])
    model.eval()
    return model

def pts3d_to_trimesh(img, pts3d, valid=None):
    H, W, THREE = img.shape
    assert THREE == 3
    assert img.shape == pts3d.shape

    vertices = pts3d.reshape(-1, 3)

    # make squares: each pixel == 2 triangles
    idx = np.arange(len(vertices)).reshape(H, W)
    idx1 = idx[:-1, :-1].ravel()  # top-left corner
    idx2 = idx[:-1, +1:].ravel()  # right-left corner
    idx3 = idx[+1:, :-1].ravel()  # bottom-left corner
    idx4 = idx[+1:, +1:].ravel()  # bottom-right corner
    faces = np.concatenate((
        np.c_[idx1, idx2, idx3],
        np.c_[idx3, idx2, idx1],  # same triangle, but backward (cheap solution to cancel face culling)
        np.c_[idx2, idx3, idx4],
        np.c_[idx4, idx3, idx2],  # same triangle, but backward (cheap solution to cancel face culling)
    ), axis=0)

    # prepare triangle colors
    face_colors = np.concatenate((
        img[:-1, :-1].reshape(-1, 3),
        img[:-1, :-1].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3)
    ), axis=0)

    # remove invalid faces
    if valid is not None:
        assert valid.shape == (H, W)
        valid_idxs = valid.ravel()
        valid_faces = valid_idxs[faces].all(axis=-1)
        faces = faces[valid_faces]
        face_colors = face_colors[valid_faces]

    assert len(faces) == len(face_colors)
    return dict(vertices=vertices, face_colors=face_colors, faces=faces)

model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
birefnet.to(DEFAULT_DEVICE)
birefnet.eval()

def extract_object(birefnet, image):
    # Data settings
    image_size = (1024, 1024)
    transform_image = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE)

    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image.size)
    return mask

def generate_mask(image: np.ndarray):
    # Convert numpy array to PIL Image
    pil_image = Image.fromarray((image * 255).astype(np.uint8))
    
    # Extract object and get mask
    mask = extract_object(birefnet, pil_image)
    
    # Convert mask to numpy array
    mask_np = np.array(mask) / 255.0
    return mask_np

def center_pcd(pcd: o3d.geometry.PointCloud, normalize=False) -> o3d.geometry.PointCloud:
    # Convert to numpy array
    points = np.asarray(pcd.points)
    
    # Compute centroid
    centroid = np.mean(points, axis=0)
    
    # Center the point cloud
    centered_points = points - centroid
    
    if normalize:
         # Compute the maximum distance from the center
        max_distance = np.max(np.linalg.norm(centered_points, axis=1))
        
        # Normalize the point cloud
        normalized_points = centered_points / max_distance
        
        # Create a new point cloud with the normalized points
        normalized_pcd = o3d.geometry.PointCloud()
        normalized_pcd.points = o3d.utility.Vector3dVector(normalized_points)
        
        # If the original point cloud has colors, normalize them too
        if pcd.has_colors():
            normalized_pcd.colors = pcd.colors
        
        # If the original point cloud has normals, copy them
        if pcd.has_normals():
            normalized_pcd.normals = pcd.normals
        
        return normalized_pcd
    else:
        pcd.points = o3d.utility.Vector3dVector(centered_points)
        return pcd

def center_mesh(mesh: o3d.geometry.TriangleMesh, normalize=False) -> o3d.geometry.TriangleMesh:
    # Convert to numpy array
    vertices = np.asarray(mesh.vertices)
    
    # Compute centroid
    centroid = np.mean(vertices, axis=0)
    
    # Center the mesh
    centered_vertices = vertices - centroid
    
    if normalize:
         # Compute the maximum distance from the center
        max_distance = np.max(np.linalg.norm(centered_vertices, axis=1))
        
        # Normalize the mesh
        normalized_vertices = centered_vertices / max_distance
        
        # Create a new mesh with the normalized vertices
        normalized_mesh = o3d.geometry.TriangleMesh()
        normalized_mesh.vertices = o3d.utility.Vector3dVector(normalized_vertices)
        normalized_mesh.triangles = mesh.triangles

        # If the original mesh has vertex colors, copy them
        if mesh.has_vertex_colors():
            normalized_mesh.vertex_colors = mesh.vertex_colors
        
        # If the original mesh has vertex normals, normalize them 
        if mesh.has_vertex_normals():
            vertex_normals = np.asarray(mesh.vertex_normals)
            normalized_vertex_normals = vertex_normals / np.linalg.norm(vertex_normals, axis=1, keepdims=True)
            normalized_mesh.vertex_normals = o3d.utility.Vector3dVector(normalized_vertex_normals)
        
        return normalized_mesh
    else:
        # Update the mesh with the centered vertices
        mesh.vertices = o3d.utility.Vector3dVector(centered_vertices)
        return mesh
    
@torch.no_grad()
def reconstruct(video_path, conf_thresh, kf_every, 
                remove_background=False, enable_registration=True, output_3d_model=True):
    # Extract frames from video
    demo_path = extract_frames(video_path)
    
    # Load dataset
    dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every)
    dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
    batch = next(iter(dataloader))
    
    for view in batch:
        view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True)
    
    demo_name = os.path.basename(video_path)
    print(f'Started reconstruction for {demo_name}')
    
    start = time.time()
    preds, preds_all = model.forward(batch)
    end = time.time()
    fps = len(batch) / (end - start)
    print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
    
    # Process results
    pcds = []
    cameras_all = []
    last_focal = None
    for j, view in enumerate(batch):
        image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
        image = (image + 1) / 2
        pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
        pts_normal = pts2normal(preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'][0]).cpu().numpy()
        conf = preds[j]['conf'][0].cpu().data.numpy()
        conf_sig = (conf - 1) / conf
        if remove_background:
            mask = generate_mask(image)
        else:
            mask = np.ones_like(conf)
            
        combined_mask = (conf_sig > conf_thresh) & (mask > 0.5)
        
        camera, last_focal = solve_cemara(torch.tensor(pts), torch.tensor(conf_sig) > 0.001, 
                                          "cuda", focal=last_focal)
        
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(pts[combined_mask])
        pcd.colors = o3d.utility.Vector3dVector(image[combined_mask])
        pcd.normals = o3d.utility.Vector3dVector(pts_normal[combined_mask])
        pcds.append(pcd)
        cameras_all.append(camera)
        
    
    pcd_combined = combine_and_clean_point_clouds(pcds, voxel_size=0.001)
    o3d_geometry = point2mesh(pcd_combined)
    o3d_geometry_centered = center_mesh(o3d_geometry, normalize=True)
    
    # Create coarse result
    coarse_output_path = export_geometry(o3d_geometry_centered)

    if enable_registration:
        pcd_combined, _, _ = improved_multiway_registration(pcds, voxel_size=0.01)
        pcd_combined = center_pcd(pcd_combined)

    if output_3d_model:
        gs_output_path = tempfile.mktemp(suffix='.ply')
        point2gs(gs_output_path, pcd_combined)
        # Create 3D model result using gaussian splatting
        return coarse_output_path, gs_output_path
    else:
        pcd_output_path = export_geometry(pcd_combined)
        return coarse_output_path, pcd_output_path

    # Clean up temporary directory
    os.system(f"rm -rf {demo_path}")

example_videos = [os.path.join('./examples', f) for f in os.listdir('./examples') if f.endswith(('.mp4', '.webm'))]

# Update the Gradio interface with improved layout
with gr.Blocks(
        title="StableRecon: 3D Reconstruction from Video",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as iface:
    gr.Markdown(
        """
        # StableRecon: Making Video to 3D easy
        <p align="center">
            <a title="Github" href="https://github.com/Stable-X/StableRecon" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/Stable-X/StableRecon?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
            </a>
            <a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
            </a>
        </p>
        
        <div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px; margin-bottom: 20px;">
            <strong>📢 About StableRecon:</strong> This is an experimental open-source project building on <a href="https://github.com/naver/dust3r" target="_blank">dust3r</a> and <a href="https://github.com/HengyiWang/spann3r" target="_blank">spann3r</a>. We're exploring video-to-3D conversion, using spann3r for tracking and implementing our own backend and meshing. While it's a work in progress with plenty of room for improvement, we're excited to share it with the community. We welcome your feedback, especially on failure cases, as we continue to develop and refine this tool.
        </div>
        """
    )
    with gr.Row():
        with gr.Column(scale=1):
            video_input = gr.Video(label="Input Video", sources=["upload"])
            with gr.Row():
                conf_thresh = gr.Slider(0, 1, value=1e-3, label="Confidence Threshold")
                kf_every = gr.Slider(1, 30, step=1, value=1, label="Keyframe Interval")
            with gr.Row():
                remove_background = gr.Checkbox(label="Remove Background", value=False)
                enable_registration = gr.Checkbox(
                    label="Enable Refinement", 
                    value=False, 
                    info="Improves alignment but takes longer"
                )
                output_3d_model = gr.Checkbox(
                    label="Output Splat", 
                    value=True,
                    info="Generate Splat (PLY) instead of Point Cloud (PLY)"
                )
            reconstruct_btn = gr.Button("Start Reconstruction")
        
        with gr.Column(scale=2):
            with gr.Tab("3D Models"):
                with gr.Group():
                    initial_model = gr.Model3D(
                        label="Reconstructed Mesh", 
                        display_mode="solid",
                        clear_color=[0.0, 0.0, 0.0, 0.0]
                    )
                
                with gr.Group():
                    initial_model = gr.Model3D(
                        label="Reconstructed PointCloud or Splat", 
                        display_mode="solid",
                        clear_color=[0.0, 0.0, 0.0, 0.0]
                    )
    
    Examples(
        fn=reconstruct,
        examples=sorted([
            os.path.join("examples", name) 
            for name in os.listdir(os.path.join("examples")) if name.endswith('.webm')
        ]),
        inputs=[video_input],
        outputs=[initial_model, output_model],
        directory_name="examples_video",
        cache_examples=False,
    )
    
    reconstruct_btn.click(
        fn=reconstruct,
        inputs=[video_input, conf_thresh, kf_every, remove_background, enable_registration, output_3d_model],
        outputs=[initial_model, output_model]
    )

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0")