File size: 10,579 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Implementation of DUSt3R training losses
# --------------------------------------------------------
from copy import copy, deepcopy
import torch
import torch.nn as nn

from dust3r.inference import get_pred_pts3d, find_opt_scaling
from dust3r.utils.geometry import inv, geotrf, normalize_pointcloud
from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale


def Sum(*losses_and_masks):
    loss, mask = losses_and_masks[0]
    if loss.ndim > 0:
        # we are actually returning the loss for every pixels
        return losses_and_masks
    else:
        # we are returning the global loss
        for loss2, mask2 in losses_and_masks[1:]:
            loss = loss + loss2
        return loss


class LLoss (nn.Module):
    """ L-norm loss
    """

    def __init__(self, reduction='mean'):
        super().__init__()
        self.reduction = reduction

    def forward(self, a, b):
        assert a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3, f'Bad shape = {a.shape}'
        dist = self.distance(a, b)
        assert dist.ndim == a.ndim-1  # one dimension less
        if self.reduction == 'none':
            return dist
        if self.reduction == 'sum':
            return dist.sum()
        if self.reduction == 'mean':
            return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
        raise ValueError(f'bad {self.reduction=} mode')

    def distance(self, a, b):
        raise NotImplementedError()


class L21Loss (LLoss):
    """ Euclidean distance between 3d points  """

    def distance(self, a, b):
        return torch.norm(a - b, dim=-1)  # normalized L2 distance


L21 = L21Loss()


class Criterion (nn.Module):
    def __init__(self, criterion=None):
        super().__init__()
        assert isinstance(criterion, LLoss), f'{criterion} is not a proper criterion!'+bb()
        self.criterion = copy(criterion)

    def get_name(self):
        return f'{type(self).__name__}({self.criterion})'

    def with_reduction(self, mode):
        res = loss = deepcopy(self)
        while loss is not None:
            assert isinstance(loss, Criterion)
            loss.criterion.reduction = 'none'  # make it return the loss for each sample
            loss = loss._loss2  # we assume loss is a Multiloss
        return res


class MultiLoss (nn.Module):
    """ Easily combinable losses (also keep track of individual loss values):
        loss = MyLoss1() + 0.1*MyLoss2()
    Usage:
        Inherit from this class and override get_name() and compute_loss()
    """

    def __init__(self):
        super().__init__()
        self._alpha = 1
        self._loss2 = None

    def compute_loss(self, *args, **kwargs):
        raise NotImplementedError()

    def get_name(self):
        raise NotImplementedError()

    def __mul__(self, alpha):
        assert isinstance(alpha, (int, float))
        res = copy(self)
        res._alpha = alpha
        return res
    __rmul__ = __mul__  # same

    def __add__(self, loss2):
        assert isinstance(loss2, MultiLoss)
        res = cur = copy(self)
        # find the end of the chain
        while cur._loss2 is not None:
            cur = cur._loss2
        cur._loss2 = loss2
        return res

    def __repr__(self):
        name = self.get_name()
        if self._alpha != 1:
            name = f'{self._alpha:g}*{name}'
        if self._loss2:
            name = f'{name} + {self._loss2}'
        return name

    def forward(self, *args, **kwargs):
        loss = self.compute_loss(*args, **kwargs)
        if isinstance(loss, tuple):
            loss, details = loss
        elif loss.ndim == 0:
            details = {self.get_name(): float(loss)}
        else:
            details = {}
        loss = loss * self._alpha

        if self._loss2:
            loss2, details2 = self._loss2(*args, **kwargs)
            loss = loss + loss2
            details |= details2

        return loss, details


class Regr3D (Criterion, MultiLoss):
    """ Ensure that all 3D points are correct.
        Asymmetric loss: view1 is supposed to be the anchor.

        P1 = RT1 @ D1
        P2 = RT2 @ D2
        loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1)
        loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2)
              = (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2)
    """

    def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False):
        super().__init__(criterion)
        self.norm_mode = norm_mode
        self.gt_scale = gt_scale

    def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None):
        # everything is normalized w.r.t. camera of view1
        in_camera1 = inv(gt1['camera_pose'])
        gt_pts1 = geotrf(in_camera1, gt1['pts3d'])  # B,H,W,3
        gt_pts2 = geotrf(in_camera1, gt2['pts3d'])  # B,H,W,3

        valid1 = gt1['valid_mask'].clone()
        valid2 = gt2['valid_mask'].clone()

        if dist_clip is not None:
            # points that are too far-away == invalid
            dis1 = gt_pts1.norm(dim=-1)  # (B, H, W)
            dis2 = gt_pts2.norm(dim=-1)  # (B, H, W)
            valid1 = valid1 & (dis1 <= dist_clip)
            valid2 = valid2 & (dis2 <= dist_clip)

        pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False)
        pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True)

        # normalize 3d points
        if self.norm_mode:
            pr_pts1, pr_pts2 = normalize_pointcloud(pr_pts1, pr_pts2, self.norm_mode, valid1, valid2)
        if self.norm_mode and not self.gt_scale:
            gt_pts1, gt_pts2 = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, valid1, valid2)

        return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, {}

    def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
        gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \
            self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw)
        # loss on img1 side
        l1 = self.criterion(pred_pts1[mask1], gt_pts1[mask1])
        # loss on gt2 side
        l2 = self.criterion(pred_pts2[mask2], gt_pts2[mask2])
        self_name = type(self).__name__
        details = {self_name+'_pts3d_1': float(l1.mean()), self_name+'_pts3d_2': float(l2.mean())}
        return Sum((l1, mask1), (l2, mask2)), (details | monitoring)


class ConfLoss (MultiLoss):
    """ Weighted regression by learned confidence.
        Assuming the input pixel_loss is a pixel-level regression loss.

    Principle:
        high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10)
        low  confidence means low  conf = 10  ==> conf_loss = x * 10 - alpha*log(10) 

        alpha: hyperparameter
    """

    def __init__(self, pixel_loss, alpha=1):
        super().__init__()
        assert alpha > 0
        self.alpha = alpha
        self.pixel_loss = pixel_loss.with_reduction('none')

    def get_name(self):
        return f'ConfLoss({self.pixel_loss})'

    def get_conf_log(self, x):
        return x, torch.log(x)

    def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
        # compute per-pixel loss
        ((loss1, msk1), (loss2, msk2)), details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw)
        if loss1.numel() == 0:
            print('NO VALID POINTS in img1', force=True)
        if loss2.numel() == 0:
            print('NO VALID POINTS in img2', force=True)

        # weight by confidence
        conf1, log_conf1 = self.get_conf_log(pred1['conf'][msk1])
        conf2, log_conf2 = self.get_conf_log(pred2['conf'][msk2])
        conf_loss1 = loss1 * conf1 - self.alpha * log_conf1
        conf_loss2 = loss2 * conf2 - self.alpha * log_conf2

        # average + nan protection (in case of no valid pixels at all)
        conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0
        conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0

        return conf_loss1 + conf_loss2, dict(conf_loss_1=float(conf_loss1), conf_loss2=float(conf_loss2), **details)


class Regr3D_ShiftInv (Regr3D):
    """ Same than Regr3D but invariant to depth shift.
    """

    def get_all_pts3d(self, gt1, gt2, pred1, pred2):
        # compute unnormalized points
        gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \
            super().get_all_pts3d(gt1, gt2, pred1, pred2)

        # compute median depth
        gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2]
        pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2]
        gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None]
        pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None]

        # subtract the median depth
        gt_z1 -= gt_shift_z
        gt_z2 -= gt_shift_z
        pred_z1 -= pred_shift_z
        pred_z2 -= pred_shift_z

        # monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach())
        return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring


class Regr3D_ScaleInv (Regr3D):
    """ Same than Regr3D but invariant to depth shift.
        if gt_scale == True: enforce the prediction to take the same scale than GT
    """

    def get_all_pts3d(self, gt1, gt2, pred1, pred2):
        # compute depth-normalized points
        gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = super().get_all_pts3d(gt1, gt2, pred1, pred2)

        # measure scene scale
        _, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2)
        _, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2)

        # prevent predictions to be in a ridiculous range
        pred_scale = pred_scale.clip(min=1e-3, max=1e3)

        # subtract the median depth
        if self.gt_scale:
            pred_pts1 *= gt_scale / pred_scale
            pred_pts2 *= gt_scale / pred_scale
            # monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean())
        else:
            gt_pts1 /= gt_scale
            gt_pts2 /= gt_scale
            pred_pts1 /= pred_scale
            pred_pts2 /= pred_scale
            # monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach())

        return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring


class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv):
    # calls Regr3D_ShiftInv first, then Regr3D_ScaleInv
    pass