Spaces:
Sleeping
Sleeping
File size: 10,315 Bytes
e4bf056 fd89d5f e4bf056 8e3d0ca d1dbe71 e4bf056 35b1ef9 e4bf056 fd89d5f e4bf056 fd89d5f e4bf056 fd89d5f 8e3d0ca fd89d5f e4bf056 8e3d0ca e4bf056 8e3d0ca e4bf056 8e3d0ca d1dbe71 8e3d0ca e4bf056 8e3d0ca e4bf056 8e3d0ca e4bf056 8e3d0ca e4bf056 d1dbe71 e4bf056 8e3d0ca e4bf056 8e3d0ca e4bf056 d1dbe71 e4bf056 d1dbe71 acc5f47 d1dbe71 acc5f47 e4bf056 d1dbe71 e4bf056 d1dbe71 e4bf056 d1dbe71 8e3d0ca e4bf056 d1dbe71 e4bf056 d1dbe71 e4bf056 8e3d0ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
import time
import torch
import numpy as np
import gradio as gr
import urllib.parse
import tempfile
import subprocess
from dust3r.losses import L21
from spann3r.model import Spann3R
from spann3r.datasets import Demo
from torch.utils.data import DataLoader
import trimesh
from scipy.spatial.transform import Rotation
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from PIL import Image
import open3d as o3d
from backend_utils import improved_multiway_registration
# Default values
DEFAULT_CKPT_PATH = './checkpoints/spann3r.pth'
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
OPENGL = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
def extract_frames(video_path: str) -> str:
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "%03d.jpg")
command = [
"ffmpeg",
"-i", video_path,
"-vf", "fps=1",
output_path
]
subprocess.run(command, check=True)
return temp_dir
def cat_meshes(meshes):
vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes])
n_vertices = np.cumsum([0]+[len(v) for v in vertices])
for i in range(len(faces)):
faces[i][:] += n_vertices[i]
vertices = np.concatenate(vertices)
colors = np.concatenate(colors)
faces = np.concatenate(faces)
return dict(vertices=vertices, face_colors=colors, faces=faces)
def load_ckpt(model_path_or_url, verbose=True):
if verbose:
print('... loading model from', model_path_or_url)
is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https')
if is_url:
ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose)
else:
ckpt = torch.load(model_path_or_url, map_location='cpu')
return ckpt
def load_model(ckpt_path, device):
model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH,
use_feat=False).to(device)
model.load_state_dict(load_ckpt(ckpt_path)['model'])
model.eval()
return model
def pts3d_to_trimesh(img, pts3d, valid=None):
H, W, THREE = img.shape
assert THREE == 3
assert img.shape == pts3d.shape
vertices = pts3d.reshape(-1, 3)
# make squares: each pixel == 2 triangles
idx = np.arange(len(vertices)).reshape(H, W)
idx1 = idx[:-1, :-1].ravel() # top-left corner
idx2 = idx[:-1, +1:].ravel() # right-left corner
idx3 = idx[+1:, :-1].ravel() # bottom-left corner
idx4 = idx[+1:, +1:].ravel() # bottom-right corner
faces = np.concatenate((
np.c_[idx1, idx2, idx3],
np.c_[idx3, idx2, idx1], # same triangle, but backward (cheap solution to cancel face culling)
np.c_[idx2, idx3, idx4],
np.c_[idx4, idx3, idx2], # same triangle, but backward (cheap solution to cancel face culling)
), axis=0)
# prepare triangle colors
face_colors = np.concatenate((
img[:-1, :-1].reshape(-1, 3),
img[:-1, :-1].reshape(-1, 3),
img[+1:, +1:].reshape(-1, 3),
img[+1:, +1:].reshape(-1, 3)
), axis=0)
# remove invalid faces
if valid is not None:
assert valid.shape == (H, W)
valid_idxs = valid.ravel()
valid_faces = valid_idxs[faces].all(axis=-1)
faces = faces[valid_faces]
face_colors = face_colors[valid_faces]
assert len(faces) == len(face_colors)
return dict(vertices=vertices, face_colors=face_colors, faces=faces)
model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
birefnet.to(DEFAULT_DEVICE)
birefnet.eval()
def extract_object(birefnet, image):
# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE)
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
return mask
def generate_mask(image: np.ndarray):
# Convert numpy array to PIL Image
pil_image = Image.fromarray((image * 255).astype(np.uint8))
# Extract object and get mask
mask = extract_object(birefnet, pil_image)
# Convert mask to numpy array
mask_np = np.array(mask) / 255.0
return mask_np
@torch.no_grad()
def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False, remove_background=False):
# Extract frames from video
demo_path = extract_frames(video_path)
# Load dataset
dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
batch = next(iter(dataloader))
for view in batch:
view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True)
demo_name = os.path.basename(video_path)
print(f'Started reconstruction for {demo_name}')
start = time.time()
preds, preds_all = model.forward(batch)
end = time.time()
fps = len(batch) / (end - start)
print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
# Process results
pts_all, images_all, conf_all, mask_all = [], [], [], []
for j, view in enumerate(batch):
image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
conf = preds[j]['conf'][0].cpu().data.numpy()
if remove_background:
mask = generate_mask(image)
else:
mask = np.ones_like(conf)
images_all.append((image[None, ...] + 1.0)/2.0)
pts_all.append(pts[None, ...])
conf_all.append(conf[None, ...])
mask_all.append(mask[None, ...])
images_all = np.concatenate(images_all, axis=0)
pts_all = np.concatenate(pts_all, axis=0) * 10
conf_all = np.concatenate(conf_all, axis=0)
mask_all = np.concatenate(mask_all, axis=0)
# Create point cloud or mesh
conf_sig_all = (conf_all-1) / conf_all
combined_mask = (conf_sig_all > conf_thresh) & (mask_all > 0.5)
# Create coarse result
coarse_scene = create_scene(pts_all, images_all, combined_mask, as_pointcloud)
coarse_output_path = save_scene(coarse_scene, as_pointcloud)
yield coarse_output_path, None, f"Reconstruction completed. FPS: {fps:.2f}"
# Create point clouds for multiway registration
pcds = []
for j in range(len(pts_all)):
pcd = o3d.geometry.PointCloud()
mask = combined_mask[j]
pcd.points = o3d.utility.Vector3dVector(pts_all[j][mask])
pcd.colors = o3d.utility.Vector3dVector(images_all[j][mask])
pcds.append(pcd)
# Perform global optimization
print("Performing global registration...")
transformed_pcds, pose_graph = improved_multiway_registration(pcds, voxel_size=0.01)
# Apply transformations from pose_graph to original pts_all
transformed_pts_all = np.zeros_like(pts_all)
for j in range(len(pts_all)):
# Get the transformation matrix from the pose graph
transformation = pose_graph.nodes[j].pose
# Reshape pts_all[j] to (H*W, 3)
H, W, _ = pts_all[j].shape
pts_reshaped = pts_all[j].reshape(-1, 3)
# Apply transformation to all points
homogeneous_pts = np.hstack((pts_reshaped, np.ones((pts_reshaped.shape[0], 1))))
transformed_pts = (transformation @ homogeneous_pts.T).T[:, :3]
# Reshape back to (H, W, 3) and store
transformed_pts_all[j] = transformed_pts.reshape(H, W, 3)
print(f"Original shape: {pts_all.shape}, Transformed shape: {transformed_pts_all.shape}")
# Create refined result
refined_scene = create_scene(transformed_pts_all, images_all, combined_mask, as_pointcloud)
refined_output_path = save_scene(refined_scene, as_pointcloud)
# Clean up temporary directory
os.system(f"rm -rf {demo_path}")
yield coarse_output_path, refined_output_path, f"Refinement completed. FPS: {fps:.2f}"
def create_scene(pts_all, images_all, combined_mask, as_pointcloud):
scene = trimesh.Scene()
if as_pointcloud:
pcd = trimesh.PointCloud(
vertices=pts_all[combined_mask].reshape(-1, 3),
colors=images_all[combined_mask].reshape(-1, 3)
)
scene.add_geometry(pcd)
else:
meshes = []
for i in range(len(images_all)):
meshes.append(pts3d_to_trimesh(images_all[i], pts_all[i], combined_mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(OPENGL @ rot))
return scene
def save_scene(scene, as_pointcloud):
if as_pointcloud:
output_path = tempfile.mktemp(suffix='.ply')
else:
output_path = tempfile.mktemp(suffix='.obj')
scene.export(output_path)
return output_path
# Update the Gradio interface
iface = gr.Interface(
fn=reconstruct,
inputs=[
gr.Video(label="Input Video"),
gr.Slider(0, 1, value=1e-6, label="Confidence Threshold"),
gr.Slider(1, 30, step=1, value=5, label="Keyframe Interval"),
gr.Checkbox(label="As Pointcloud", value=False),
gr.Checkbox(label="Remove Background", value=False)
],
outputs=[
gr.Model3D(label="Coarse 3D Model", display_mode="solid"),
gr.Model3D(label="Refined 3D Model", display_mode="solid"),
gr.Textbox(label="Status")
],
title="3D Reconstruction with Spatial Memory, Background Removal, and Global Optimization",
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0",) |