File size: 10,315 Bytes
e4bf056
 
 
 
 
fd89d5f
e4bf056
 
 
 
 
 
 
 
8e3d0ca
 
 
d1dbe71
 
 
e4bf056
 
35b1ef9
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d5f
 
 
 
 
 
 
 
 
 
 
e4bf056
 
 
fd89d5f
 
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d5f
8e3d0ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d5f
e4bf056
8e3d0ca
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e3d0ca
e4bf056
 
 
 
 
8e3d0ca
 
 
d1dbe71
8e3d0ca
e4bf056
 
 
8e3d0ca
e4bf056
 
 
 
8e3d0ca
e4bf056
 
 
8e3d0ca
e4bf056
d1dbe71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4bf056
 
 
 
8e3d0ca
 
e4bf056
 
 
 
 
8e3d0ca
e4bf056
 
d1dbe71
e4bf056
 
 
d1dbe71
 
acc5f47
d1dbe71
acc5f47
 
e4bf056
d1dbe71
e4bf056
d1dbe71
e4bf056
 
 
 
d1dbe71
8e3d0ca
 
 
e4bf056
 
d1dbe71
 
e4bf056
 
d1dbe71
e4bf056
 
 
8e3d0ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import time
import torch
import numpy as np
import gradio as gr
import urllib.parse
import tempfile
import subprocess
from dust3r.losses import L21
from spann3r.model import Spann3R
from spann3r.datasets import Demo
from torch.utils.data import DataLoader
import trimesh
from scipy.spatial.transform import Rotation
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from PIL import Image
import open3d as o3d
from backend_utils import improved_multiway_registration


# Default values
DEFAULT_CKPT_PATH = './checkpoints/spann3r.pth'
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'

OPENGL = np.array([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])

def extract_frames(video_path: str) -> str:
    temp_dir = tempfile.mkdtemp()
    output_path = os.path.join(temp_dir, "%03d.jpg")
    command = [
        "ffmpeg",
        "-i", video_path,
        "-vf", "fps=1",
        output_path
    ]
    subprocess.run(command, check=True)
    return temp_dir

def cat_meshes(meshes):
    vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes])
    n_vertices = np.cumsum([0]+[len(v) for v in vertices])
    for i in range(len(faces)):
        faces[i][:] += n_vertices[i]

    vertices = np.concatenate(vertices)
    colors = np.concatenate(colors)
    faces = np.concatenate(faces)
    return dict(vertices=vertices, face_colors=colors, faces=faces)

def load_ckpt(model_path_or_url, verbose=True):
    if verbose:
        print('... loading model from', model_path_or_url)
    is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https')
    
    if is_url:
        ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose)
    else:
        ckpt = torch.load(model_path_or_url, map_location='cpu')
    return ckpt

def load_model(ckpt_path, device):
    model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH, 
                    use_feat=False).to(device)
    
    model.load_state_dict(load_ckpt(ckpt_path)['model'])
    model.eval()
    return model

def pts3d_to_trimesh(img, pts3d, valid=None):
    H, W, THREE = img.shape
    assert THREE == 3
    assert img.shape == pts3d.shape

    vertices = pts3d.reshape(-1, 3)

    # make squares: each pixel == 2 triangles
    idx = np.arange(len(vertices)).reshape(H, W)
    idx1 = idx[:-1, :-1].ravel()  # top-left corner
    idx2 = idx[:-1, +1:].ravel()  # right-left corner
    idx3 = idx[+1:, :-1].ravel()  # bottom-left corner
    idx4 = idx[+1:, +1:].ravel()  # bottom-right corner
    faces = np.concatenate((
        np.c_[idx1, idx2, idx3],
        np.c_[idx3, idx2, idx1],  # same triangle, but backward (cheap solution to cancel face culling)
        np.c_[idx2, idx3, idx4],
        np.c_[idx4, idx3, idx2],  # same triangle, but backward (cheap solution to cancel face culling)
    ), axis=0)

    # prepare triangle colors
    face_colors = np.concatenate((
        img[:-1, :-1].reshape(-1, 3),
        img[:-1, :-1].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3)
    ), axis=0)

    # remove invalid faces
    if valid is not None:
        assert valid.shape == (H, W)
        valid_idxs = valid.ravel()
        valid_faces = valid_idxs[faces].all(axis=-1)
        faces = faces[valid_faces]
        face_colors = face_colors[valid_faces]

    assert len(faces) == len(face_colors)
    return dict(vertices=vertices, face_colors=face_colors, faces=faces)

model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
birefnet.to(DEFAULT_DEVICE)
birefnet.eval()

def extract_object(birefnet, image):
    # Data settings
    image_size = (1024, 1024)
    transform_image = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE)

    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image.size)
    return mask

def generate_mask(image: np.ndarray):
    # Convert numpy array to PIL Image
    pil_image = Image.fromarray((image * 255).astype(np.uint8))
    
    # Extract object and get mask
    mask = extract_object(birefnet, pil_image)
    
    # Convert mask to numpy array
    mask_np = np.array(mask) / 255.0
    return mask_np

@torch.no_grad()
def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False, remove_background=False):
    # Extract frames from video
    demo_path = extract_frames(video_path)
    
    # Load dataset
    dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every)
    dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
    batch = next(iter(dataloader))
    
    for view in batch:
        view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True)
    
    demo_name = os.path.basename(video_path)
    print(f'Started reconstruction for {demo_name}')
    
    start = time.time()
    preds, preds_all = model.forward(batch)
    end = time.time()
    fps = len(batch) / (end - start)
    print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
    
    # Process results
    pts_all, images_all, conf_all, mask_all = [], [], [], []
    for j, view in enumerate(batch):
        image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
        pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
        conf = preds[j]['conf'][0].cpu().data.numpy()
        
        if remove_background:
            mask = generate_mask(image)
        else:
            mask = np.ones_like(conf)
        
        images_all.append((image[None, ...] + 1.0)/2.0)
        pts_all.append(pts[None, ...])
        conf_all.append(conf[None, ...])
        mask_all.append(mask[None, ...])
    
    images_all = np.concatenate(images_all, axis=0)
    pts_all = np.concatenate(pts_all, axis=0) * 10
    conf_all = np.concatenate(conf_all, axis=0)
    mask_all = np.concatenate(mask_all, axis=0)
    
    # Create point cloud or mesh
    conf_sig_all = (conf_all-1) / conf_all
    combined_mask = (conf_sig_all > conf_thresh) & (mask_all > 0.5)
    
    # Create coarse result
    coarse_scene = create_scene(pts_all, images_all, combined_mask, as_pointcloud)
    coarse_output_path = save_scene(coarse_scene, as_pointcloud)
    
    yield coarse_output_path, None, f"Reconstruction completed. FPS: {fps:.2f}"
    
    # Create point clouds for multiway registration
    pcds = []
    for j in range(len(pts_all)):
        pcd = o3d.geometry.PointCloud()
        mask = combined_mask[j]
        pcd.points = o3d.utility.Vector3dVector(pts_all[j][mask])
        pcd.colors = o3d.utility.Vector3dVector(images_all[j][mask])
        pcds.append(pcd)

    # Perform global optimization 
    print("Performing global registration...")
    transformed_pcds, pose_graph = improved_multiway_registration(pcds, voxel_size=0.01)
    
    # Apply transformations from pose_graph to original pts_all
    transformed_pts_all = np.zeros_like(pts_all)
    for j in range(len(pts_all)):
        # Get the transformation matrix from the pose graph
        transformation = pose_graph.nodes[j].pose
        
        # Reshape pts_all[j] to (H*W, 3)
        H, W, _ = pts_all[j].shape
        pts_reshaped = pts_all[j].reshape(-1, 3)
        
        # Apply transformation to all points
        homogeneous_pts = np.hstack((pts_reshaped, np.ones((pts_reshaped.shape[0], 1))))
        transformed_pts = (transformation @ homogeneous_pts.T).T[:, :3]
        
        # Reshape back to (H, W, 3) and store
        transformed_pts_all[j] = transformed_pts.reshape(H, W, 3)

    print(f"Original shape: {pts_all.shape}, Transformed shape: {transformed_pts_all.shape}")

    # Create refined result
    refined_scene = create_scene(transformed_pts_all, images_all, combined_mask, as_pointcloud)
    refined_output_path = save_scene(refined_scene, as_pointcloud)

    # Clean up temporary directory
    os.system(f"rm -rf {demo_path}")
    
    yield coarse_output_path, refined_output_path, f"Refinement completed. FPS: {fps:.2f}"

def create_scene(pts_all, images_all, combined_mask, as_pointcloud):
    scene = trimesh.Scene()
    
    if as_pointcloud:
        pcd = trimesh.PointCloud(
            vertices=pts_all[combined_mask].reshape(-1, 3),
            colors=images_all[combined_mask].reshape(-1, 3)
        )
        scene.add_geometry(pcd)
    else:
        meshes = []
        for i in range(len(images_all)):
            meshes.append(pts3d_to_trimesh(images_all[i], pts_all[i], combined_mask[i]))
        mesh = trimesh.Trimesh(**cat_meshes(meshes))
        scene.add_geometry(mesh)

    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(OPENGL @ rot))
    return scene
def save_scene(scene, as_pointcloud):
    if as_pointcloud:
        output_path = tempfile.mktemp(suffix='.ply')
    else:
        output_path = tempfile.mktemp(suffix='.obj')
    scene.export(output_path)
    return output_path

# Update the Gradio interface
iface = gr.Interface(
    fn=reconstruct,
    inputs=[
        gr.Video(label="Input Video"),
        gr.Slider(0, 1, value=1e-6, label="Confidence Threshold"),
        gr.Slider(1, 30, step=1, value=5, label="Keyframe Interval"),
        gr.Checkbox(label="As Pointcloud", value=False),
        gr.Checkbox(label="Remove Background", value=False)
    ],
    outputs=[
        gr.Model3D(label="Coarse 3D Model", display_mode="solid"),
        gr.Model3D(label="Refined 3D Model", display_mode="solid"),
        gr.Textbox(label="Status")
    ],
    title="3D Reconstruction with Spatial Memory, Background Removal, and Global Optimization",
)

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0",)