File size: 8,133 Bytes
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import cv2
import json
import numpy as np
import os.path as osp
from collections import deque

from dust3r.utils.image import imread_cv2
from .base_many_view_dataset import BaseManyViewDataset

class ArkitScene(BaseManyViewDataset):
    def __init__(self, num_seq=100, num_frames=5, 
                 min_thresh=10, max_thresh=100, 
                 test_id=None, full_video=False, 
                 kf_every=1, *args, ROOT, **kwargs):
        self.ROOT = ROOT
        super().__init__(*args, **kwargs)
        self.num_seq = num_seq
        self.num_frames = num_frames
        self.max_thresh = max_thresh
        self.min_thresh = min_thresh
        self.active_thresh= min_thresh
        self.test_id = test_id
        self.full_video = full_video
        self.kf_every = kf_every

         # load all scenes
        self.load_all_scenes(ROOT)
    
    def __len__(self):
        return len(self.scene_list) * self.num_seq
    
    def load_all_scenes(self, base_dir, num_seq=200):
        
        if self.test_id is None:
            
            if self.split == 'train':
                scene_path = osp.join(base_dir, 'raw', 'Training')
            elif self.split == 'val':
                scene_path = osp.join(base_dir, 'raw', 'Validation')
            
            self.scene_path = scene_path
            self.scene_list = os.listdir(scene_path)
            
                
            print(f"Found {len(self.scene_list)} scenes in split {self.split}")
            
        else:
            if isinstance(self.test_id, list):
                self.scene_list = self.test_id
            else:
                self.scene_list = [self.test_id]
                
            print(f"Test_id: {self.test_id}")
    
    def get_intrinsic(self, intrinsics_dir, frame_id, video_id):
        '''
        Nerfstudio
        '''
        intrinsic_fn = osp.join(intrinsics_dir, f"{video_id}_{frame_id}.pincam")

        if not osp.exists(intrinsic_fn):
            intrinsic_fn = osp.join(intrinsics_dir, f"{video_id}_{float(frame_id) - 0.001:.3f}.pincam")

        if not osp.exists(intrinsic_fn):
            intrinsic_fn = osp.join(intrinsics_dir, f"{video_id}_{float(frame_id) + 0.001:.3f}.pincam")

        _, _, fx, fy, hw, hh = np.loadtxt(intrinsic_fn)
        intrinsic = np.asarray([[fx, 0, hw], [0, fy, hh], [0, 0, 1]])
        return intrinsic
    
    def get_pose(self, frame_id, poses_from_traj):
        frame_pose = None
        if str(frame_id) in poses_from_traj:
            frame_pose = np.array(poses_from_traj[str(frame_id)])
        else:
            for my_key in poses_from_traj:
                if abs(float(frame_id) - float(my_key)) < 0.1:
                    frame_pose = np.array(poses_from_traj[str(my_key)])
        
        if frame_pose is None:
            print(f"Warning: No pose found for frame {frame_id}")
            
            return None

        assert frame_pose is not None
        frame_pose[0:3, 1:3] *= -1
        frame_pose = frame_pose[np.array([1, 0, 2, 3]), :]
        frame_pose[2, :] *= -1
        return frame_pose
    
    def traj_string_to_matrix(self, traj_string):
        """convert traj_string into translation and rotation matrices
        Args:
            traj_string: A space-delimited file where each line represents a camera position at a particular timestamp.
            The file has seven columns:
            * Column 1: timestamp
            * Columns 2-4: rotation (axis-angle representation in radians)
            * Columns 5-7: translation (usually in meters)
        Returns:
            ts: translation matrix
            Rt: rotation matrix
        """
        tokens = traj_string.split()
        assert len(tokens) == 7
        ts = tokens[0]
        # Rotation in angle axis
        angle_axis = [float(tokens[1]), float(tokens[2]), float(tokens[3])]
        r_w_to_p, _ = cv2.Rodrigues(np.asarray(angle_axis))  # type: ignore
        # Translation
        t_w_to_p = np.asarray([float(tokens[4]), float(tokens[5]), float(tokens[6])])
        extrinsics = np.eye(4, 4)
        extrinsics[:3, :3] = r_w_to_p
        extrinsics[:3, -1] = t_w_to_p
        Rt = np.linalg.inv(extrinsics)
        return (ts, Rt)
    
    def _get_views(self, idx, resolution, rng, attempts=0): 
        scene_id = self.scene_list[idx // self.num_seq]

        image_path = osp.join(self.scene_path, scene_id, 'lowres_wide')
        depth_path = osp.join(self.scene_path, scene_id, 'lowres_depth')
        intrinsics_path = osp.join(self.scene_path, scene_id, 'lowres_wide_intrinsics')
        pose_path = osp.join(self.scene_path, scene_id, 'lowres_wide.traj')

        if not osp.exists(image_path) or not osp.exists(depth_path) or not osp.exists(intrinsics_path) or not osp.exists(pose_path):
            print(f"Warning: Scene not found: {scene_id}")
            new_idx = rng.integers(0, self.__len__()-1)
            return self._get_views(new_idx, resolution, rng)

        img_idxs_ = [x for x in sorted(os.listdir(depth_path))]
        img_idxs_ = [x.split(".png")[0].split("_")[1] for x in img_idxs_]

        if len(img_idxs_) < self.num_frames:
            print(f"Warning: Not enough frames in {scene_id}, {len(img_idxs_)} < {self.num_frames}")
            new_idx = rng.integers(0, self.__len__()-1)
            return self._get_views(new_idx, resolution, rng)
        
        img_idxs = self.sample_frame_idx(img_idxs_, rng, full_video=self.full_video)
        imgs_idxs = deque(img_idxs)

        # Load trajectory
        poses_from_traj = {}
        with open(pose_path, "r", encoding="utf-8") as f:
            traj = f.readlines()

        for line in traj:
            poses_from_traj[f"{round(float(line.split(' ')[0]), 3):.3f}"] = np.array(
                self.traj_string_to_matrix(line)[1].tolist()
            )

        


        views = []

        while len(imgs_idxs) > 0:
            im_idx = imgs_idxs.popleft()
            impath = osp.join(image_path, f'{scene_id}_{im_idx}.png')
            depthpath = osp.join(depth_path, f'{scene_id}_{im_idx}.png')

            camera_pose = self.get_pose(im_idx, poses_from_traj)
            intrinsics_ = self.get_intrinsic(intrinsics_path, im_idx, scene_id).astype(np.float32)

            if not osp.exists(impath) or not osp.exists(depthpath) or camera_pose is None:
                print (f"Warning: Image/Depth/Pose not found for {impath}")
                new_idx = rng.integers(0, self.__len__()-1)
                return self._get_views(new_idx, resolution, rng)

            rgb_image = imread_cv2(impath)
            depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
            depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0

            camera_pose = camera_pose.astype(np.float32)
            # gl to cv
            camera_pose[:, 1:3] *= -1.0

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics_, resolution, rng=rng, info=impath)
            
            num_valid = (depthmap > 0.0).sum()
            if num_valid == 0 or (not np.isfinite(camera_pose).all()):
                if self.full_video:
                    print(f"Warning: No valid depthmap found for {impath}")
                    continue
                else:
                    if attempts >= 5:
                        new_idx = rng.integers(0, self.__len__()-1)
                        return self._get_views(new_idx, resolution, rng)
                    return self._get_views(idx, resolution, rng, attempts+1)
            
            views.append(dict(
                img=rgb_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset='arkit',
                label=osp.join(scene_id, im_idx),
                instance=osp.split(impath)[1],
            ))
        return views

if __name__ == "__main__":

    num_frames=5
    print('loading dataset')

    dataset = ArkitScene(split='train', ROOT="./data/arkit_lowres", resolution=224, num_seq=100, max_thresh=100)