File size: 12,588 Bytes
e4bf056
 
 
 
 
fd89d5f
e4bf056
 
 
 
 
 
 
 
8e3d0ca
 
 
d1dbe71
e66346c
d1dbe71
e4bf056
 
35b1ef9
e4bf056
 
 
 
 
 
 
 
e66346c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4bf056
 
e66346c
 
 
e4bf056
 
 
e66346c
 
e4bf056
 
e66346c
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d5f
 
 
 
 
 
 
 
 
 
 
e4bf056
 
 
fd89d5f
 
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d5f
8e3d0ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4bf056
e66346c
 
e4bf056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e66346c
e4bf056
 
e66346c
e4bf056
e66346c
e4bf056
e66346c
8e3d0ca
 
 
d1dbe71
e66346c
 
8e3d0ca
e66346c
 
 
 
 
e4bf056
e66346c
e4bf056
e66346c
 
 
 
 
d1dbe71
e66346c
d1dbe71
e66346c
d1dbe71
e66346c
 
 
 
d1dbe71
e66346c
 
 
 
 
 
 
d1dbe71
e66346c
d1dbe71
 
 
 
e66346c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4bf056
e66346c
 
 
 
 
e4bf056
 
e66346c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import os
import time
import torch
import numpy as np
import gradio as gr
import urllib.parse
import tempfile
import subprocess
from dust3r.losses import L21
from spann3r.model import Spann3R
from spann3r.datasets import Demo
from torch.utils.data import DataLoader
import trimesh
from scipy.spatial.transform import Rotation
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from PIL import Image
import open3d as o3d
from backend_utils import improved_multiway_registration, pts2normal, point2mesh, combine_and_clean_point_clouds


# Default values
DEFAULT_CKPT_PATH = './checkpoints/spann3r.pth'
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'

OPENGL = np.array([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])

def export_geometry(geometry, as_pointcloud=False):
    if as_pointcloud:
        if not isinstance(geometry, o3d.geometry.PointCloud):
            raise ValueError("Expected an Open3D PointCloud object when as_pointcloud is True")
        output_path = tempfile.mktemp(suffix='.ply')
    else:
        if not isinstance(geometry, o3d.geometry.TriangleMesh):
            raise ValueError("Expected an Open3D TriangleMesh object when as_pointcloud is False")
        output_path = tempfile.mktemp(suffix='.obj')

    # Apply rotation
    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    transform = np.linalg.inv(OPENGL @ rot)
    geometry.transform(transform)

    # Export the geometry
    if as_pointcloud:
        o3d.io.write_point_cloud(output_path, geometry, write_ascii=False, compressed=True)
    else:
        o3d.io.write_triangle_mesh(output_path, geometry, write_ascii=False, compressed=True)
    
    return output_path


def extract_frames(video_path: str, duration: float = 20.0, fps: float = 3.0) -> str:
    temp_dir = tempfile.mkdtemp()
    output_path = os.path.join(temp_dir, "%03d.jpg")
    
    filter_complex = f"select='if(lt(t,{duration}),1,0)',fps={fps}"

    command = [
        "ffmpeg",
        "-i", video_path,
        "-vf", filter_complex,
        "-vsync", "0",
        output_path
    ]
    
    subprocess.run(command, check=True)
    return temp_dir

def cat_meshes(meshes):
    vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes])
    n_vertices = np.cumsum([0]+[len(v) for v in vertices])
    for i in range(len(faces)):
        faces[i][:] += n_vertices[i]

    vertices = np.concatenate(vertices)
    colors = np.concatenate(colors)
    faces = np.concatenate(faces)
    return dict(vertices=vertices, face_colors=colors, faces=faces)

def load_ckpt(model_path_or_url, verbose=True):
    if verbose:
        print('... loading model from', model_path_or_url)
    is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https')
    
    if is_url:
        ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose)
    else:
        ckpt = torch.load(model_path_or_url, map_location='cpu')
    return ckpt

def load_model(ckpt_path, device):
    model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH, 
                    use_feat=False).to(device)
    
    model.load_state_dict(load_ckpt(ckpt_path)['model'])
    model.eval()
    return model

def pts3d_to_trimesh(img, pts3d, valid=None):
    H, W, THREE = img.shape
    assert THREE == 3
    assert img.shape == pts3d.shape

    vertices = pts3d.reshape(-1, 3)

    # make squares: each pixel == 2 triangles
    idx = np.arange(len(vertices)).reshape(H, W)
    idx1 = idx[:-1, :-1].ravel()  # top-left corner
    idx2 = idx[:-1, +1:].ravel()  # right-left corner
    idx3 = idx[+1:, :-1].ravel()  # bottom-left corner
    idx4 = idx[+1:, +1:].ravel()  # bottom-right corner
    faces = np.concatenate((
        np.c_[idx1, idx2, idx3],
        np.c_[idx3, idx2, idx1],  # same triangle, but backward (cheap solution to cancel face culling)
        np.c_[idx2, idx3, idx4],
        np.c_[idx4, idx3, idx2],  # same triangle, but backward (cheap solution to cancel face culling)
    ), axis=0)

    # prepare triangle colors
    face_colors = np.concatenate((
        img[:-1, :-1].reshape(-1, 3),
        img[:-1, :-1].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3),
        img[+1:, +1:].reshape(-1, 3)
    ), axis=0)

    # remove invalid faces
    if valid is not None:
        assert valid.shape == (H, W)
        valid_idxs = valid.ravel()
        valid_faces = valid_idxs[faces].all(axis=-1)
        faces = faces[valid_faces]
        face_colors = face_colors[valid_faces]

    assert len(faces) == len(face_colors)
    return dict(vertices=vertices, face_colors=face_colors, faces=faces)

model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
birefnet.to(DEFAULT_DEVICE)
birefnet.eval()

def extract_object(birefnet, image):
    # Data settings
    image_size = (1024, 1024)
    transform_image = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE)

    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image.size)
    return mask

def generate_mask(image: np.ndarray):
    # Convert numpy array to PIL Image
    pil_image = Image.fromarray((image * 255).astype(np.uint8))
    
    # Extract object and get mask
    mask = extract_object(birefnet, pil_image)
    
    # Convert mask to numpy array
    mask_np = np.array(mask) / 255.0
    return mask_np
@torch.no_grad()
def reconstruct(video_path, conf_thresh, kf_every, 
                as_pointcloud=False, remove_background=False, refine=False):
    # Extract frames from video
    demo_path = extract_frames(video_path)
    
    # Load dataset
    dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every)
    dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
    batch = next(iter(dataloader))
    
    for view in batch:
        view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True)
    
    demo_name = os.path.basename(video_path)
    print(f'Started reconstruction for {demo_name}')
    
    start = time.time()
    preds, preds_all = model.forward(batch)
    end = time.time()
    fps = len(batch) / (end - start)
    print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
    
    # Process results
    pcds = []
    for j, view in enumerate(batch):
        image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
        image = (image + 1) / 2
        pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
        pts_normal = pts2normal(preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'][0]).cpu().numpy()
        conf = preds[j]['conf'][0].cpu().data.numpy()
        conf_sig = (conf - 1) / conf
        if remove_background:
            mask = generate_mask(image)
        else:
            mask = np.ones_like(conf)
            
        combined_mask = (conf_sig > conf_thresh) & (mask > 0.5)
        
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(pts[combined_mask])
        pcd.colors = o3d.utility.Vector3dVector(image[combined_mask])
        pcd.normals = o3d.utility.Vector3dVector(pts_normal[combined_mask])
        pcds.append(pcd)
    
    pcd_combined = combine_and_clean_point_clouds(pcds, voxel_size=0.001)
    
    if as_pointcloud:
        o3d_geometry = pcd_combined
    else:
        o3d_geometry = point2mesh(pcd_combined)
        
    # Create coarse result
    coarse_output_path = export_geometry(o3d_geometry, as_pointcloud)
    
    yield coarse_output_path, None
    
    if refine:
        # Perform global optimization 
        print("Performing global registration...")
        transformed_pcds, _, _ = improved_multiway_registration(pcds, voxel_size=0.001)
        
        if as_pointcloud:
            o3d_geometry = transformed_pcds
        else:
            o3d_geometry = point2mesh(transformed_pcds)
            
        # Create coarse result
        refined_output_path = export_geometry(o3d_geometry, as_pointcloud)
        
        yield coarse_output_path, refined_output_path

    # Clean up temporary directory
    os.system(f"rm -rf {demo_path}")

# Update the Gradio interface with improved layout
with gr.Blocks(
        title="StableSpann3r: Making Spann3r stable with Odometry Backend",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as iface:
    gr.Markdown(
        """
        # StableSpann3r: Making Spann3r stable with Odometry Backend
        <p align="center">
            <a title="Website" href="https://stable-x.github.io/StableSpann3r/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
            </a>
            <a title="arXiv" href="https://arxiv.org/abs/XXXX.XXXXX" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
            </a>
            <a title="Github" href="https://github.com/Stable-X/StableSpann3r" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/Stable-X/StableSpann3r?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
            </a>
            <a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
            </a>
        </p>
        """
    )
    with gr.Row():
        with gr.Column(scale=1):
            video_input = gr.Video(label="Input Video")
            with gr.Row():
                conf_thresh = gr.Slider(0, 1, value=1e-3, label="Confidence Threshold")
                kf_every = gr.Slider(1, 30, step=1, value=1, label="Keyframe Interval")
            with gr.Row():
                remove_background = gr.Checkbox(label="Remove Background", value=False)
                refine = gr.Checkbox(label="Enable Backend", value=False)
                as_pointcloud = gr.Checkbox(label="As Pointcloud", value=False)
            reconstruct_btn = gr.Button("Reconstruct")
        
        with gr.Column(scale=2):
            with gr.Tab("Coarse Model"):
                coarse_model = gr.Model3D(label="Coarse 3D Model", display_mode="solid", clear_color=[0.0, 0.0, 0.0, 0.0])
            with gr.Tab("Refined Model"):
                refined_model = gr.Model3D(label="Refined 3D Model", display_mode="solid", clear_color=[0.0, 0.0, 0.0, 0.0])
    
    reconstruct_btn.click(
        fn=reconstruct,
        inputs=[video_input, conf_thresh, kf_every, as_pointcloud, remove_background, refine],
        outputs=[coarse_model, refined_model]
    )

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0")