Spaces:
Sleeping
Sleeping
File size: 12,582 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import torch
from dust3r.losses import Criterion, MultiLoss
from dust3r.inference import get_pred_pts3d
from dust3r.utils.misc import invalid_to_zeros, invalid_to_nans
from dust3r.utils.geometry import inv, geotrf
def Sum(losses, masks, conf=None):
loss, mask = losses[0], masks[0]
if loss.ndim > 0:
# we are actually returning the loss for every pixels
if conf is not None:
return losses, masks, conf
return losses, masks
else:
# we are returning the global loss
for loss2 in losses[1:]:
loss = loss + loss2
return loss
def get_norm_factor(pts, norm_mode='avg_dis', valids=None, fix_first=True):
assert pts[0].ndim >= 3 and pts[0].shape[-1] == 3
assert pts[1] is None or (pts[1].ndim >= 3 and pts[1].shape[-1] == 3)
norm_mode, dis_mode = norm_mode.split('_')
nan_pts = []
nnzs = []
if norm_mode == 'avg':
# gather all points together (joint normalization)
for i, pt in enumerate(pts):
nan_pt, nnz = invalid_to_zeros(pt, valids[i], ndim=3)
nan_pts.append(nan_pt)
nnzs.append(nnz)
if fix_first:
break
all_pts = torch.cat(nan_pts, dim=1)
# compute distance to origin
all_dis = all_pts.norm(dim=-1)
if dis_mode == 'dis':
pass # do nothing
elif dis_mode == 'log1p':
all_dis = torch.log1p(all_dis)
else:
raise ValueError(f'bad {dis_mode=}')
norm_factor = all_dis.sum(dim=1) / (torch.cat(nnzs).sum() + 1e-8)
else:
raise ValueError(f'Not implemented {norm_mode=}')
norm_factor = norm_factor.clip(min=1e-8)
while norm_factor.ndim < pts[0].ndim:
norm_factor.unsqueeze_(-1)
return norm_factor
def normalize_pointcloud_t(pts, norm_mode='avg_dis', valids=None, fix_first=True, gt=False):
if gt:
norm_factor = get_norm_factor(pts, norm_mode, valids, fix_first)
res = []
for i, pt in enumerate(pts):
res.append(pt / norm_factor)
else:
pts_l, pts_r = pts
# use pts_l and pts_r[-1] as pts to normalize
norm_factor = get_norm_factor(pts_l + [pts_r[-1]], norm_mode, valids, fix_first)
res_l = []
res_r = []
for i in range(len(pts_l)):
res_l.append(pts_l[i] / norm_factor)
res_r.append(pts_r[i] / norm_factor)
res = [res_l, res_r]
return res, norm_factor
@torch.no_grad()
def get_joint_pointcloud_depth(zs, valid_masks=None, quantile=0.5):
# set invalid points to NaN
_zs = []
for i in range(len(zs)):
valid_mask = valid_masks[i] if valid_masks is not None else None
_z = invalid_to_nans(zs[i], valid_mask).reshape(len(zs[i]), -1)
_zs.append(_z)
_zs = torch.cat(_zs, dim=-1)
# compute median depth overall (ignoring nans)
if quantile == 0.5:
shift_z = torch.nanmedian(_zs, dim=-1).values
else:
shift_z = torch.nanquantile(_zs, quantile, dim=-1)
return shift_z # (B,)
@torch.no_grad()
def get_joint_pointcloud_center_scale(pts, valid_masks=None, z_only=False, center=True):
# set invalid points to NaN
_pts = []
for i in range(len(pts)):
valid_mask = valid_masks[i] if valid_masks is not None else None
_pt = invalid_to_nans(pts[i], valid_mask).reshape(len(pts[i]), -1, 3)
_pts.append(_pt)
_pts = torch.cat(_pts, dim=1)
# compute median center
_center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3)
if z_only:
_center[..., :2] = 0 # do not center X and Y
# compute median norm
_norm = ((_pts - _center) if center else _pts).norm(dim=-1)
scale = torch.nanmedian(_norm, dim=1).values
return _center[:, None, :, :], scale[:, None, None, None]
class Regr3D_t(Criterion, MultiLoss):
def __init__(self, criterion, norm_mode='avg_dis',
gt_scale=False, fix_first=True):
super().__init__(criterion)
self.norm_mode = norm_mode
self.gt_scale = gt_scale
self.fix_first = fix_first
def get_all_pts3d_t(self, gts, preds, dist_clip=None):
# everything is normalized w.r.t. camera of view1
in_camera1 = inv(gts[0]['camera_pose'])
gt_pts = []
valids = []
pr_pts = []
pr_pts_l = []
pr_pts_r = []
for i, gt in enumerate(gts):
# in_camera1: Bs, 4, 4 gt['pts3d']: Bs, H, W, 3
gt_pts.append(geotrf(in_camera1, gt['pts3d']))
valid = gt['valid_mask'].clone()
if dist_clip is not None:
# points that are too far-away == invalid
dis = gt['pts3d'].norm(dim=-1)
valid = valid & (dis <= dist_clip)
valids.append(valid)
if i != len(gts)-1:
pr_pts_l.append(get_pred_pts3d(gt, preds[i][0], use_pose=(i!=0)))
if i != 0:
pr_pts_r.append(get_pred_pts3d(gt, preds[i-1][1], use_pose=(i!=0)))
pr_pts = (pr_pts_l, pr_pts_r)
if self.norm_mode:
pr_pts, pr_factor = normalize_pointcloud_t(pr_pts, self.norm_mode, valids, fix_first=self.fix_first, gt=False)
else:
pr_factor = None
if self.norm_mode and not self.gt_scale:
gt_pts, gt_factor = normalize_pointcloud_t(gt_pts, self.norm_mode, valids, fix_first=self.fix_first, gt=True)
else:
gt_factor = None
return gt_pts, pr_pts, gt_factor, pr_factor, valids, {}
def compute_frame_loss(self, gts, preds, **kw):
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = \
self.get_all_pts3d_t(gts, preds, **kw)
pred_pts_l, pred_pts_r = pred_pts
loss_all = []
mask_all = []
conf_all = []
loss_left = 0
loss_right = 0
pred_conf_l = 0
pred_conf_r = 0
for i in range(len(gt_pts)):
# Left (Reference)
if i != len(gt_pts)-1:
frame_loss = self.criterion(pred_pts_l[i][masks[i]], gt_pts[i][masks[i]])
loss_all.append(frame_loss)
mask_all.append(masks[i])
conf_all.append(preds[i][0]['conf'])
# To compare target/reference loss
if i != 0:
loss_left += frame_loss.cpu().detach().numpy().mean()
pred_conf_l += preds[i][0]['conf'].cpu().detach().numpy().mean()
# Right (Target)
if i != 0:
frame_loss = self.criterion(pred_pts_r[i-1][masks[i]], gt_pts[i][masks[i]])
loss_all.append(frame_loss)
mask_all.append(masks[i])
conf_all.append(preds[i-1][1]['conf'])
# To compare target/reference loss
if i != len(gt_pts)-1:
loss_right += frame_loss.cpu().detach().numpy().mean()
pred_conf_r += preds[i-1][1]['conf'].cpu().detach().numpy().mean()
if pr_factor is not None and gt_factor is not None:
filter_factor = pr_factor[pr_factor > gt_factor]
else:
filter_factor = []
if len(filter_factor) > 0:
factor_loss = (filter_factor - gt_factor).abs().mean()
else:
factor_loss = 0.0
self_name = type(self).__name__
details = {self_name+'_pts3d_1': float(loss_all[0].mean()),
self_name+'_pts3d_2': float(loss_all[1].mean()),
self_name+'loss_left': float(loss_left),
self_name+'loss_right': float(loss_right),
self_name+'conf_left': float(pred_conf_l),
self_name+'conf_right': float(pred_conf_r)}
return Sum(loss_all, mask_all, conf_all), (details | monitoring), factor_loss
class ConfLoss_t(MultiLoss):
""" Weighted regression by learned confidence.
Assuming the input pixel_loss is a pixel-level regression loss.
Principle:
high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10)
low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10)
alpha: hyperparameter
"""
def __init__(self, pixel_loss, alpha=1):
super().__init__()
assert alpha > 0
self.alpha = alpha
self.pixel_loss = pixel_loss.with_reduction('none')
def get_name(self):
return f'ConfLoss({self.pixel_loss})'
def get_conf_log(self, x):
return x, torch.log(x)
def compute_frame_loss(self, gts, preds, **kw):
# compute per-pixel loss
(losses, masks, confs), details, loss_factor = self.pixel_loss.compute_frame_loss(gts, preds, **kw)
# weight by confidence
conf_losses = []
conf_sum = 0
for i in range(len(losses)):
conf, log_conf = self.get_conf_log(confs[i][masks[i]])
conf_sum += conf.mean()
conf_loss = losses[i] * conf - self.alpha * log_conf
conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0
conf_losses.append(conf_loss)
conf_losses = torch.stack(conf_losses) * 2.0
conf_loss_mean = conf_losses.mean()
return conf_loss_mean, dict(conf_loss_1=float(conf_losses[0]), conf_loss2=float(conf_losses[1]), conf_mean=conf_sum/len(losses), **details), loss_factor
class Regr3D_t_ShiftInv (Regr3D_t):
""" Same than Regr3D but invariant to depth shift.
"""
def get_all_pts3d_t(self, gts, preds):
# compute unnormalized points
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = \
super().get_all_pts3d_t(gts, preds)
pred_pts_l, pred_pts_r = pred_pts
gt_zs = [gt_pt[..., 2] for gt_pt in gt_pts]
pred_zs = [pred_pt[..., 2] for pred_pt in pred_pts_l]
pred_zs.append(pred_pts_r[-1][..., 2])
# compute median depth
gt_shift_z = get_joint_pointcloud_depth(gt_zs, masks)[:, None, None]
pred_shift_z = get_joint_pointcloud_depth(pred_zs, masks)[:, None, None]
# subtract the median depth
for i in range(len(gt_pts)):
gt_pts[i][..., 2] -= gt_shift_z
for i in range(len(pred_pts)):
for j in range(len(pred_pts[i])):
pred_pts[i][j][..., 2] -= pred_shift_z
monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach())
return gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring
class Regr3D_t_ScaleInv (Regr3D_t):
""" Same than Regr3D but invariant to depth shift.
if gt_scale == True: enforce the prediction to take the same scale than GT
"""
def get_all_pts3d_t(self, gts, preds):
# compute depth-normalized points
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = super().get_all_pts3d_t(gts, preds)
# measure scene scale
pred_pts_l, pred_pts_r = pred_pts
pred_pts_all = [pred_pt for pred_pt in pred_pts_l]
pred_pts_all.append(pred_pts_r[-1])
_, gt_scale = get_joint_pointcloud_center_scale(gt_pts, masks)
_, pred_scale = get_joint_pointcloud_center_scale(pred_pts_all, masks)
# prevent predictions to be in a ridiculous range
pred_scale = pred_scale.clip(min=1e-3, max=1e3)
# subtract the median depth
if self.gt_scale:
for i in range(len(pred_pts)):
for j in range(len(pred_pts[i])):
pred_pts[i][j] *= gt_scale / pred_scale
else:
for i in range(len(pred_pts)):
for j in range(len(pred_pts[i])):
pred_pts[i][j] *= pred_scale / gt_scale
for i in range(len(gt_pts)):
gt_pts[i] *= gt_scale / pred_scale
monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach())
return gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring
class Regr3D_t_ScaleShiftInv (Regr3D_t_ScaleInv, Regr3D_t_ShiftInv):
# calls Regr3D_ShiftInv first, then Regr3D_ScaleInv
pass
|