Spaces:
Sleeping
Sleeping
/* | |
Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
*/ | |
void CHECK_KERNEL() {auto error = cudaGetLastError(); TORCH_CHECK( error == cudaSuccess, cudaGetErrorString(error));} | |
template < typename scalar_t > | |
__global__ void rope_2d_cuda_kernel( | |
//scalar_t* __restrict__ tokens, | |
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> tokens, | |
const int64_t* __restrict__ pos, | |
const float base, | |
const float fwd ) | |
// const int N, const int H, const int D ) | |
{ | |
// tokens shape = (B, N, H, D) | |
const int N = tokens.size(1); | |
const int H = tokens.size(2); | |
const int D = tokens.size(3); | |
// each block update a single token, for all heads | |
// each thread takes care of a single output | |
extern __shared__ float shared[]; | |
float* shared_inv_freq = shared + D; | |
const int b = blockIdx.x / N; | |
const int n = blockIdx.x % N; | |
const int Q = D / 4; | |
// one token = [0..Q : Q..2Q : 2Q..3Q : 3Q..D] | |
// u_Y v_Y u_X v_X | |
// shared memory: first, compute inv_freq | |
if (threadIdx.x < Q) | |
shared_inv_freq[threadIdx.x] = fwd / powf(base, threadIdx.x/float(Q)); | |
__syncthreads(); | |
// start of X or Y part | |
const int X = threadIdx.x < D/2 ? 0 : 1; | |
const int m = (X*D/2) + (threadIdx.x % Q); // index of u_Y or u_X | |
// grab the cos,sin appropriate for me | |
const float freq = pos[blockIdx.x*2+X] * shared_inv_freq[threadIdx.x % Q]; | |
const float cos = cosf(freq); | |
const float sin = sinf(freq); | |
/* | |
float* shared_cos_sin = shared + D + D/4; | |
if ((threadIdx.x % (D/2)) < Q) | |
shared_cos_sin[m+0] = cosf(freq); | |
else | |
shared_cos_sin[m+Q] = sinf(freq); | |
__syncthreads(); | |
const float cos = shared_cos_sin[m+0]; | |
const float sin = shared_cos_sin[m+Q]; | |
*/ | |
for (int h = 0; h < H; h++) | |
{ | |
// then, load all the token for this head in shared memory | |
shared[threadIdx.x] = tokens[b][n][h][threadIdx.x]; | |
__syncthreads(); | |
const float u = shared[m]; | |
const float v = shared[m+Q]; | |
// write output | |
if ((threadIdx.x % (D/2)) < Q) | |
tokens[b][n][h][threadIdx.x] = u*cos - v*sin; | |
else | |
tokens[b][n][h][threadIdx.x] = v*cos + u*sin; | |
} | |
} | |
void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd ) | |
{ | |
const int B = tokens.size(0); // batch size | |
const int N = tokens.size(1); // sequence length | |
const int H = tokens.size(2); // number of heads | |
const int D = tokens.size(3); // dimension per head | |
TORCH_CHECK(tokens.stride(3) == 1 && tokens.stride(2) == D, "tokens are not contiguous"); | |
TORCH_CHECK(pos.is_contiguous(), "positions are not contiguous"); | |
TORCH_CHECK(pos.size(0) == B && pos.size(1) == N && pos.size(2) == 2, "bad pos.shape"); | |
TORCH_CHECK(D % 4 == 0, "token dim must be multiple of 4"); | |
// one block for each layer, one thread per local-max | |
const int THREADS_PER_BLOCK = D; | |
const int N_BLOCKS = B * N; // each block takes care of H*D values | |
const int SHARED_MEM = sizeof(float) * (D + D/4); | |
AT_DISPATCH_FLOATING_TYPES_AND_HALF(tokens.type(), "rope_2d_cuda", ([&] { | |
rope_2d_cuda_kernel<scalar_t> <<<N_BLOCKS, THREADS_PER_BLOCK, SHARED_MEM>>> ( | |
//tokens.data_ptr<scalar_t>(), | |
tokens.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(), | |
pos.data_ptr<int64_t>(), | |
base, fwd); //, N, H, D ); | |
})); | |
} | |