Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
import numpy as np | |
from tqdm import tqdm | |
from matplotlib import pyplot as pl | |
import mast3r.utils.path_to_dust3r # noqa | |
from dust3r.utils.geometry import depthmap_to_pts3d, geotrf, inv | |
class TSDFPostProcess: | |
""" Optimizes a signed distance-function to improve depthmaps. | |
""" | |
def __init__(self, optimizer, subsample=8, TSDF_thresh=0., TSDF_batchsize=int(1e7)): | |
self.TSDF_thresh = TSDF_thresh # None -> no TSDF | |
self.TSDF_batchsize = TSDF_batchsize | |
self.optimizer = optimizer | |
pts3d, depthmaps, confs = optimizer.get_dense_pts3d(clean_depth=False, subsample=subsample) | |
pts3d, depthmaps = self._TSDF_postprocess_or_not(pts3d, depthmaps, confs) | |
self.pts3d = pts3d | |
self.depthmaps = depthmaps | |
self.confs = confs | |
def _get_depthmaps(self, TSDF_filtering_thresh=None): | |
if TSDF_filtering_thresh: | |
self._refine_depths_with_TSDF(self.optimizer, TSDF_filtering_thresh) # compute refined depths if needed | |
dms = self.TSDF_im_depthmaps if TSDF_filtering_thresh else self.im_depthmaps | |
return [d.exp() for d in dms] | |
def _refine_depths_with_TSDF(self, TSDF_filtering_thresh, niter=1, nsamples=1000): | |
""" | |
Leverage TSDF to post-process estimated depths | |
for each pixel, find zero level of TSDF along ray (or closest to 0) | |
""" | |
print("Post-Processing Depths with TSDF fusion.") | |
self.TSDF_im_depthmaps = [] | |
alldepths, allposes, allfocals, allpps, allimshapes = self._get_depthmaps(), self.optimizer.get_im_poses( | |
), self.optimizer.get_focals(), self.optimizer.get_principal_points(), self.imshapes | |
for vi in tqdm(range(self.optimizer.n_imgs)): | |
dm, pose, focal, pp, imshape = alldepths[vi], allposes[vi], allfocals[vi], allpps[vi], allimshapes[vi] | |
minvals = torch.full(dm.shape, 1e20) | |
for it in range(niter): | |
H, W = dm.shape | |
curthresh = (niter - it) * TSDF_filtering_thresh | |
dm_offsets = (torch.randn(H, W, nsamples).to(dm) - 1.) * \ | |
curthresh # decreasing search std along with iterations | |
newdm = dm[..., None] + dm_offsets # [H,W,Nsamp] | |
curproj = self._backproj_pts3d(in_depths=[newdm], in_im_poses=pose[None], in_focals=focal[None], in_pps=pp[None], in_imshapes=[ | |
imshape])[0] # [H,W,Nsamp,3] | |
# Batched TSDF eval | |
curproj = curproj.view(-1, 3) | |
tsdf_vals = [] | |
valids = [] | |
for batch in range(0, len(curproj), self.TSDF_batchsize): | |
values, valid = self._TSDF_query( | |
curproj[batch:min(batch + self.TSDF_batchsize, len(curproj))], curthresh) | |
tsdf_vals.append(values) | |
valids.append(valid) | |
tsdf_vals = torch.cat(tsdf_vals, dim=0) | |
valids = torch.cat(valids, dim=0) | |
tsdf_vals = tsdf_vals.view([H, W, nsamples]) | |
valids = valids.view([H, W, nsamples]) | |
# keep depth value that got us the closest to 0 | |
tsdf_vals[~valids] = torch.inf # ignore invalid values | |
tsdf_vals = tsdf_vals.abs() | |
mins = torch.argmin(tsdf_vals, dim=-1, keepdim=True) | |
# when all samples live on a very flat zone, do nothing | |
allbad = (tsdf_vals == curthresh).sum(dim=-1) == nsamples | |
dm[~allbad] = torch.gather(newdm, -1, mins)[..., 0][~allbad] | |
# Save refined depth map | |
self.TSDF_im_depthmaps.append(dm.log()) | |
def _TSDF_query(self, qpoints, TSDF_filtering_thresh, weighted=True): | |
""" | |
TSDF query call: returns the weighted TSDF value for each query point [N, 3] | |
""" | |
N, three = qpoints.shape | |
assert three == 3 | |
qpoints = qpoints[None].repeat(self.optimizer.n_imgs, 1, 1) # [B,N,3] | |
# get projection coordinates and depths onto images | |
coords_and_depth = self._proj_pts3d(pts3d=qpoints, cam2worlds=self.optimizer.get_im_poses( | |
), focals=self.optimizer.get_focals(), pps=self.optimizer.get_principal_points()) | |
image_coords = coords_and_depth[..., :2].round().to(int) # for now, there's no interpolation... | |
proj_depths = coords_and_depth[..., -1] | |
# recover depth values after scene optim | |
pred_depths, pred_confs, valids = self._get_pixel_depths(image_coords) | |
# Gather TSDF scores | |
all_SDF_scores = pred_depths - proj_depths # SDF | |
unseen = all_SDF_scores < -TSDF_filtering_thresh # handle visibility | |
# all_TSDF_scores = all_SDF_scores.clip(-TSDF_filtering_thresh,TSDF_filtering_thresh) # SDF -> TSDF | |
all_TSDF_scores = all_SDF_scores.clip(-TSDF_filtering_thresh, 1e20) # SDF -> TSDF | |
# Gather TSDF confidences and ignore points that are unseen, either OOB during reproj or too far behind seen depth | |
all_TSDF_weights = (~unseen).float() * valids.float() | |
if weighted: | |
all_TSDF_weights = pred_confs.exp() * all_TSDF_weights | |
# Aggregate all votes, ignoring zeros | |
TSDF_weights = all_TSDF_weights.sum(dim=0) | |
valids = TSDF_weights != 0. | |
TSDF_wsum = (all_TSDF_weights * all_TSDF_scores).sum(dim=0) | |
TSDF_wsum[valids] /= TSDF_weights[valids] | |
return TSDF_wsum, valids | |
def _get_pixel_depths(self, image_coords, TSDF_filtering_thresh=None, with_normals_conf=False): | |
""" Recover depth value for each input pixel coordinate, along with OOB validity mask | |
""" | |
B, N, two = image_coords.shape | |
assert B == self.optimizer.n_imgs and two == 2 | |
depths = torch.zeros([B, N], device=image_coords.device) | |
valids = torch.zeros([B, N], dtype=bool, device=image_coords.device) | |
confs = torch.zeros([B, N], device=image_coords.device) | |
curconfs = self._get_confs_with_normals() if with_normals_conf else self.im_conf | |
for ni, (imc, depth, conf) in enumerate(zip(image_coords, self._get_depthmaps(TSDF_filtering_thresh), curconfs)): | |
H, W = depth.shape | |
valids[ni] = torch.logical_and(0 <= imc[:, 1], imc[:, 1] < | |
H) & torch.logical_and(0 <= imc[:, 0], imc[:, 0] < W) | |
imc[~valids[ni]] = 0 | |
depths[ni] = depth[imc[:, 1], imc[:, 0]] | |
confs[ni] = conf.cuda()[imc[:, 1], imc[:, 0]] | |
return depths, confs, valids | |
def _get_confs_with_normals(self): | |
outconfs = [] | |
# Confidence basedf on depth gradient | |
class Sobel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.filter = nn.Conv2d(in_channels=1, out_channels=2, kernel_size=3, stride=1, padding=1, bias=False) | |
Gx = torch.tensor([[2.0, 0.0, -2.0], [4.0, 0.0, -4.0], [2.0, 0.0, -2.0]]) | |
Gy = torch.tensor([[2.0, 4.0, 2.0], [0.0, 0.0, 0.0], [-2.0, -4.0, -2.0]]) | |
G = torch.cat([Gx.unsqueeze(0), Gy.unsqueeze(0)], 0) | |
G = G.unsqueeze(1) | |
self.filter.weight = nn.Parameter(G, requires_grad=False) | |
def forward(self, img): | |
x = self.filter(img) | |
x = torch.mul(x, x) | |
x = torch.sum(x, dim=1, keepdim=True) | |
x = torch.sqrt(x) | |
return x | |
grad_op = Sobel().to(self.im_depthmaps[0].device) | |
for conf, depth in zip(self.im_conf, self.im_depthmaps): | |
grad_confs = (1. - grad_op(depth[None, None])[0, 0]).clip(0) | |
if not 'dbg show': | |
pl.imshow(grad_confs.cpu()) | |
pl.show() | |
outconfs.append(conf * grad_confs.to(conf)) | |
return outconfs | |
def _proj_pts3d(self, pts3d, cam2worlds, focals, pps): | |
""" | |
Projection operation: from 3D points to 2D coordinates + depths | |
""" | |
B = pts3d.shape[0] | |
assert pts3d.shape[0] == cam2worlds.shape[0] | |
# prepare Extrinsincs | |
R, t = cam2worlds[:, :3, :3], cam2worlds[:, :3, -1] | |
Rinv = R.transpose(-2, -1) | |
tinv = -Rinv @ t[..., None] | |
# prepare intrinsics | |
intrinsics = torch.eye(3).to(cam2worlds)[None].repeat(focals.shape[0], 1, 1) | |
if len(focals.shape) == 1: | |
focals = torch.stack([focals, focals], dim=-1) | |
intrinsics[:, 0, 0] = focals[:, 0] | |
intrinsics[:, 1, 1] = focals[:, 1] | |
intrinsics[:, :2, -1] = pps | |
# Project | |
projpts = intrinsics @ (Rinv @ pts3d.transpose(-2, -1) + tinv) # I(RX+t) : [B,3,N] | |
projpts = projpts.transpose(-2, -1) # [B,N,3] | |
projpts[..., :2] /= projpts[..., [-1]] # [B,N,3] (X/Z , Y/Z, Z) | |
return projpts | |
def _backproj_pts3d(self, in_depths=None, in_im_poses=None, | |
in_focals=None, in_pps=None, in_imshapes=None): | |
""" | |
Backprojection operation: from image depths to 3D points | |
""" | |
# Get depths and projection params if not provided | |
focals = self.optimizer.get_focals() if in_focals is None else in_focals | |
im_poses = self.optimizer.get_im_poses() if in_im_poses is None else in_im_poses | |
depth = self._get_depthmaps() if in_depths is None else in_depths | |
pp = self.optimizer.get_principal_points() if in_pps is None else in_pps | |
imshapes = self.imshapes if in_imshapes is None else in_imshapes | |
def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *imshapes[i]) | |
dm_to_3d = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[[i]]) for i in range(im_poses.shape[0])] | |
def autoprocess(x): | |
x = x[0] | |
return x.transpose(-2, -1) if len(x.shape) == 4 else x | |
return [geotrf(pose, autoprocess(pt)) for pose, pt in zip(im_poses, dm_to_3d)] | |
def _pts3d_to_depth(self, pts3d, cam2worlds, focals, pps): | |
""" | |
Projection operation: from 3D points to 2D coordinates + depths | |
""" | |
B = pts3d.shape[0] | |
assert pts3d.shape[0] == cam2worlds.shape[0] | |
# prepare Extrinsincs | |
R, t = cam2worlds[:, :3, :3], cam2worlds[:, :3, -1] | |
Rinv = R.transpose(-2, -1) | |
tinv = -Rinv @ t[..., None] | |
# prepare intrinsics | |
intrinsics = torch.eye(3).to(cam2worlds)[None].repeat(self.optimizer.n_imgs, 1, 1) | |
if len(focals.shape) == 1: | |
focals = torch.stack([focals, focals], dim=-1) | |
intrinsics[:, 0, 0] = focals[:, 0] | |
intrinsics[:, 1, 1] = focals[:, 1] | |
intrinsics[:, :2, -1] = pps | |
# Project | |
projpts = intrinsics @ (Rinv @ pts3d.transpose(-2, -1) + tinv) # I(RX+t) : [B,3,N] | |
projpts = projpts.transpose(-2, -1) # [B,N,3] | |
projpts[..., :2] /= projpts[..., [-1]] # [B,N,3] (X/Z , Y/Z, Z) | |
return projpts | |
def _depth_to_pts3d(self, in_depths=None, in_im_poses=None, in_focals=None, in_pps=None, in_imshapes=None): | |
""" | |
Backprojection operation: from image depths to 3D points | |
""" | |
# Get depths and projection params if not provided | |
focals = self.optimizer.get_focals() if in_focals is None else in_focals | |
im_poses = self.optimizer.get_im_poses() if in_im_poses is None else in_im_poses | |
depth = self._get_depthmaps() if in_depths is None else in_depths | |
pp = self.optimizer.get_principal_points() if in_pps is None else in_pps | |
imshapes = self.imshapes if in_imshapes is None else in_imshapes | |
def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *imshapes[i]) | |
dm_to_3d = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i + 1]) for i in range(im_poses.shape[0])] | |
def autoprocess(x): | |
x = x[0] | |
H, W, three = x.shape[:3] | |
return x.transpose(-2, -1) if len(x.shape) == 4 else x | |
return [geotrf(pp, autoprocess(pt)) for pp, pt in zip(im_poses, dm_to_3d)] | |
def _get_pts3d(self, TSDF_filtering_thresh=None, **kw): | |
""" | |
return 3D points (possibly filtering depths with TSDF) | |
""" | |
return self._backproj_pts3d(in_depths=self._get_depthmaps(TSDF_filtering_thresh=TSDF_filtering_thresh), **kw) | |
def _TSDF_postprocess_or_not(self, pts3d, depthmaps, confs, niter=1): | |
# Setup inner variables | |
self.imshapes = [im.shape[:2] for im in self.optimizer.imgs] | |
self.im_depthmaps = [dd.log().view(imshape) for dd, imshape in zip(depthmaps, self.imshapes)] | |
self.im_conf = confs | |
if self.TSDF_thresh > 0.: | |
# Create or update self.TSDF_im_depthmaps that contain logdepths filtered with TSDF | |
self._refine_depths_with_TSDF(self.TSDF_thresh, niter=niter) | |
depthmaps = [dd.exp() for dd in self.TSDF_im_depthmaps] | |
# Turn them into 3D points | |
pts3d = self._backproj_pts3d(in_depths=depthmaps) | |
depthmaps = [dd.flatten() for dd in depthmaps] | |
pts3d = [pp.view(-1, 3) for pp in pts3d] | |
return pts3d, depthmaps | |
def get_dense_pts3d(self, clean_depth=True): | |
return self.pts3d, self.depthmaps, self.confs | |