Spaces:
Sleeping
Sleeping
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# coarse to fine utilities | |
# -------------------------------------------------------- | |
import numpy as np | |
def crop_tag(cell): | |
return f'[{cell[1]}:{cell[3]},{cell[0]}:{cell[2]}]' | |
def crop_slice(cell): | |
return slice(cell[1], cell[3]), slice(cell[0], cell[2]) | |
def _start_pos(total_size, win_size, overlap): | |
# we must have AT LEAST overlap between segments | |
# first segment starts at 0, last segment starts at total_size-win_size | |
assert 0 <= overlap < 1 | |
assert total_size >= win_size | |
spacing = win_size * (1 - overlap) | |
last_pt = total_size - win_size | |
n_windows = 2 + int((last_pt - 1) // spacing) | |
return np.linspace(0, last_pt, n_windows).round().astype(int) | |
def multiple_of_16(x): | |
return (x // 16) * 16 | |
def _make_overlapping_grid(H, W, size, overlap): | |
H_win = multiple_of_16(H * size // max(H, W)) | |
W_win = multiple_of_16(W * size // max(H, W)) | |
x = _start_pos(W, W_win, overlap) | |
y = _start_pos(H, H_win, overlap) | |
grid = np.stack(np.meshgrid(x, y, indexing='xy'), axis=-1) | |
grid = np.concatenate((grid, grid + (W_win, H_win)), axis=-1) | |
return grid.reshape(-1, 4) | |
def _cell_size(cell2): | |
width, height = cell2[:, 2] - cell2[:, 0], cell2[:, 3] - cell2[:, 1] | |
assert width.min() >= 0 | |
assert height.min() >= 0 | |
return width, height | |
def _norm_windows(cell2, H2, W2, forced_resolution=None): | |
# make sure the window aspect ratio is 3/4, or the output resolution is forced_resolution if defined | |
outcell = cell2.copy() | |
width, height = _cell_size(cell2) | |
width2, height2 = width.clip(max=W2), height.clip(max=H2) | |
if forced_resolution is None: | |
width2[width < height] = (height2[width < height] * 3.01 / 4).clip(max=W2) | |
height2[width >= height] = (width2[width >= height] * 3.01 / 4).clip(max=H2) | |
else: | |
forced_H, forced_W = forced_resolution | |
width2[:] = forced_W | |
height2[:] = forced_H | |
half = (width2 - width) / 2 | |
outcell[:, 0] -= half | |
outcell[:, 2] += half | |
half = (height2 - height) / 2 | |
outcell[:, 1] -= half | |
outcell[:, 3] += half | |
# proj to integers | |
outcell = np.floor(outcell).astype(int) | |
# Take care of flooring errors | |
tmpw, tmph = _cell_size(outcell) | |
outcell[:, 0] += tmpw.astype(tmpw.dtype) - width2.astype(tmpw.dtype) | |
outcell[:, 1] += tmph.astype(tmpw.dtype) - height2.astype(tmpw.dtype) | |
# make sure 0 <= x < W2 and 0 <= y < H2 | |
outcell[:, 0::2] -= outcell[:, [0]].clip(max=0) | |
outcell[:, 1::2] -= outcell[:, [1]].clip(max=0) | |
outcell[:, 0::2] -= outcell[:, [2]].clip(min=W2) - W2 | |
outcell[:, 1::2] -= outcell[:, [3]].clip(min=H2) - H2 | |
width, height = _cell_size(outcell) | |
assert np.all(width == width2.astype(width.dtype)) and np.all( | |
height == height2.astype(height.dtype)), "Error, output is not of the expected shape." | |
assert np.all(width <= W2) | |
assert np.all(height <= H2) | |
return outcell | |
def _weight_pixels(cell, pix, assigned, gauss_var=2): | |
center = cell.reshape(-1, 2, 2).mean(axis=1) | |
width, height = _cell_size(cell) | |
# square distance between each cell center and each point | |
dist = (center[:, None] - pix[None]) / np.c_[width, height][:, None] | |
dist2 = np.square(dist).sum(axis=-1) | |
assert assigned.shape == dist2.shape | |
res = np.where(assigned, np.exp(-gauss_var * dist2), 0) | |
return res | |
def pos2d_in_rect(p1, cell1): | |
x, y = p1.T | |
l, t, r, b = cell1 | |
assigned = (l <= x) & (x < r) & (t <= y) & (y < b) | |
return assigned | |
def _score_cell(cell1, H2, W2, p1, p2, min_corres=10, forced_resolution=None): | |
assert p1.shape == p2.shape | |
# compute keypoint assignment | |
assigned = pos2d_in_rect(p1, cell1[None].T) | |
assert assigned.shape == (len(cell1), len(p1)) | |
# remove cells without correspondences | |
valid_cells = assigned.sum(axis=1) >= min_corres | |
cell1 = cell1[valid_cells] | |
assigned = assigned[valid_cells] | |
if not valid_cells.any(): | |
return cell1, cell1, assigned | |
# fill-in the assigned points in both image | |
assigned_p1 = np.empty((len(cell1), len(p1), 2), dtype=np.float32) | |
assigned_p2 = np.empty((len(cell1), len(p2), 2), dtype=np.float32) | |
assigned_p1[:] = p1[None] | |
assigned_p2[:] = p2[None] | |
assigned_p1[~assigned] = np.nan | |
assigned_p2[~assigned] = np.nan | |
# find the median center and scale of assigned points in each cell | |
# cell_center1 = np.nanmean(assigned_p1, axis=1) | |
cell_center2 = np.nanmean(assigned_p2, axis=1) | |
im1_q25, im1_q75 = np.nanquantile(assigned_p1, (0.1, 0.9), axis=1) | |
im2_q25, im2_q75 = np.nanquantile(assigned_p2, (0.1, 0.9), axis=1) | |
robust_std1 = (im1_q75 - im1_q25).clip(20.) | |
robust_std2 = (im2_q75 - im2_q25).clip(20.) | |
cell_size1 = (cell1[:, 2:4] - cell1[:, 0:2]) | |
cell_size2 = cell_size1 * robust_std2 / robust_std1 | |
cell2 = np.c_[cell_center2 - cell_size2 / 2, cell_center2 + cell_size2 / 2] | |
# make sure cell bounds are valid | |
cell2 = _norm_windows(cell2, H2, W2, forced_resolution=forced_resolution) | |
# compute correspondence weights | |
corres_weights = _weight_pixels(cell1, p1, assigned) * _weight_pixels(cell2, p2, assigned) | |
# return a list of window pairs and assigned correspondences | |
return cell1, cell2, corres_weights | |
def greedy_selection(corres_weights, target=0.9): | |
# corres_weight = (n_cell_pair, n_corres) matrix. | |
# If corres_weight[c,p]>0, means that correspondence p is visible in cell pair p | |
assert 0 < target <= 1 | |
corres_weights = corres_weights.copy() | |
total = corres_weights.max(axis=0).sum() | |
target *= total | |
# init = empty | |
res = [] | |
cur = np.zeros(corres_weights.shape[1]) # current selection | |
while cur.sum() < target: | |
# pick the nex best cell pair | |
best = corres_weights.sum(axis=1).argmax() | |
res.append(best) | |
# update current | |
cur += corres_weights[best] | |
# print('appending', best, 'with score', corres_weights[best].sum(), '-->', cur.sum()) | |
# remove from all other views | |
corres_weights = (corres_weights - corres_weights[best]).clip(min=0) | |
return res | |
def select_pairs_of_crops(img_q, img_b, pos2d_in_query, pos2d_in_ref, maxdim=512, overlap=.5, forced_resolution=None): | |
# prepare the overlapping cells | |
grid_q = _make_overlapping_grid(*img_q.shape[:2], maxdim, overlap) | |
grid_b = _make_overlapping_grid(*img_b.shape[:2], maxdim, overlap) | |
assert forced_resolution is None or len(forced_resolution) == 2 | |
if isinstance(forced_resolution[0], int) or not len(forced_resolution[0]) == 2: | |
forced_resolution1 = forced_resolution2 = forced_resolution | |
else: | |
assert len(forced_resolution[1]) == 2 | |
forced_resolution1 = forced_resolution[0] | |
forced_resolution2 = forced_resolution[1] | |
# Make sure crops respect constraints | |
grid_q = _norm_windows(grid_q.astype(float), *img_q.shape[:2], forced_resolution=forced_resolution1) | |
grid_b = _norm_windows(grid_b.astype(float), *img_b.shape[:2], forced_resolution=forced_resolution2) | |
# score cells | |
pairs_q = _score_cell(grid_q, *img_b.shape[:2], pos2d_in_query, pos2d_in_ref, forced_resolution=forced_resolution2) | |
pairs_b = _score_cell(grid_b, *img_q.shape[:2], pos2d_in_ref, pos2d_in_query, forced_resolution=forced_resolution1) | |
pairs_b = pairs_b[1], pairs_b[0], pairs_b[2] # cellq, cellb, corres_weights | |
# greedy selection until all correspondences are generated | |
cell1, cell2, corres_weights = map(np.concatenate, zip(pairs_q, pairs_b)) | |
if len(corres_weights) == 0: | |
return # tolerated for empty generators | |
order = greedy_selection(corres_weights, target=0.9) | |
for i in order: | |
def pair_tag(qi, bi): return (str(qi) + crop_tag(cell1[i]), str(bi) + crop_tag(cell2[i])) | |
yield cell1[i], cell2[i], pair_tag | |