Spaces:
Sleeping
Sleeping
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# DUSt3R model class | |
# -------------------------------------------------------- | |
from copy import deepcopy | |
import torch | |
import os | |
from packaging import version | |
import huggingface_hub | |
from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape | |
from .heads import head_factory | |
from dust3r.patch_embed import get_patch_embed | |
import urllib | |
import dust3r.utils.path_to_croco # noqa: F401 | |
from models.croco import CroCoNet # noqa | |
inf = float('inf') | |
hf_version_number = huggingface_hub.__version__ | |
assert version.parse(hf_version_number) >= version.parse("0.22.0"), "Outdated huggingface_hub version, please reinstall requirements.txt" | |
def load_model(model_url, device, landscape_only=False, verbose=True): | |
if verbose: | |
print('... loading model from', model_url) | |
ckpt = torch.hub.load_state_dict_from_url(model_url, map_location='cpu', progress=verbose) | |
args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R") | |
if 'landscape_only' not in args: | |
args = args[:-1] + ', landscape_only=False)' | |
else: | |
args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False') | |
assert "landscape_only=False" in args | |
if landscape_only: | |
args = args.replace('landscape_only=False', 'landscape_only=True') | |
if verbose: | |
print(f"instantiating : {args}") | |
net = eval(args) | |
s = net.load_state_dict(ckpt['model'], strict=False) | |
if verbose: | |
print(s) | |
return net.to(device) | |
class AsymmetricCroCo3DStereo ( | |
CroCoNet, | |
huggingface_hub.PyTorchModelHubMixin, | |
library_name="dust3r", | |
repo_url="https://github.com/naver/dust3r", | |
tags=["image-to-3d"], | |
): | |
""" Two siamese encoders, followed by two decoders. | |
The goal is to output 3d points directly, both images in view1's frame | |
(hence the asymmetry). | |
""" | |
def __init__(self, | |
output_mode='pts3d', | |
head_type='linear', | |
depth_mode=('exp', -inf, inf), | |
conf_mode=('exp', 1, inf), | |
freeze='none', | |
landscape_only=True, | |
patch_embed_cls='PatchEmbedDust3R', # PatchEmbedDust3R or ManyAR_PatchEmbed | |
**croco_kwargs): | |
self.patch_embed_cls = patch_embed_cls | |
self.croco_args = fill_default_args(croco_kwargs, super().__init__) | |
super().__init__(**croco_kwargs) | |
# dust3r specific initialization | |
self.dec_blocks2 = deepcopy(self.dec_blocks) | |
self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs) | |
self.set_freeze(freeze) | |
def from_pretrained(cls, pretrained_model_name_or_path, **kw): | |
if os.path.isfile(pretrained_model_name_or_path) or urllib.parse.urlparse(pretrained_model_name_or_path).scheme in ('http', 'https'): | |
return load_model(pretrained_model_name_or_path, device='cpu', **kw) | |
else: | |
return super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw) | |
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): | |
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim) | |
def load_state_dict(self, ckpt, **kw): | |
# duplicate all weights for the second decoder if not present | |
new_ckpt = dict(ckpt) | |
if not any(k.startswith('dec_blocks2') for k in ckpt): | |
for key, value in ckpt.items(): | |
if key.startswith('dec_blocks'): | |
new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value | |
return super().load_state_dict(new_ckpt, **kw) | |
def set_freeze(self, freeze): # this is for use by downstream models | |
self.freeze = freeze | |
to_be_frozen = { | |
'none': [], | |
'mask': [self.mask_token], | |
'encoder': [self.mask_token, self.patch_embed, self.enc_blocks], | |
} | |
freeze_all_params(to_be_frozen[freeze]) | |
def _set_prediction_head(self, *args, **kwargs): | |
""" No prediction head """ | |
return | |
def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, | |
**kw): | |
assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \ | |
f'{img_size=} must be multiple of {patch_size=}' | |
self.output_mode = output_mode | |
self.head_type = head_type | |
self.depth_mode = depth_mode | |
self.conf_mode = conf_mode | |
# allocate heads | |
self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) | |
self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode)) | |
# magic wrapper | |
self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only) | |
self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only) | |
def _encode_image(self, image, true_shape): | |
''' | |
Params: | |
- image: B x C x H x W | |
- true_shape: B x 2 [[H1, W1], [H2, W2], ...] | |
Returns: | |
- x: B x Npatches x D | |
- pos: B x Npatches x 2 | |
''' | |
# embed the image into patches (x has size B x Npatches x C) | |
x, pos = self.patch_embed(image, true_shape=true_shape) | |
# add positional embedding without cls token | |
assert self.enc_pos_embed is None | |
# now apply the transformer encoder and normalization | |
for blk in self.enc_blocks: | |
x = blk(x, pos) | |
x = self.enc_norm(x) | |
return x, pos, None | |
def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2): | |
if img1.shape[-2:] == img2.shape[-2:]: | |
out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0), | |
torch.cat((true_shape1, true_shape2), dim=0)) | |
out, out2 = out.chunk(2, dim=0) | |
pos, pos2 = pos.chunk(2, dim=0) | |
else: | |
out, pos, _ = self._encode_image(img1, true_shape1) | |
out2, pos2, _ = self._encode_image(img2, true_shape2) | |
return out, out2, pos, pos2 | |
def _encode_symmetrized(self, view1, view2): | |
img1 = view1['img'] | |
img2 = view2['img'] | |
B = img1.shape[0] | |
# Recover true_shape when available, otherwise assume that the img shape is the true one | |
shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1)) | |
shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1)) | |
# warning! maybe the images have different portrait/landscape orientations | |
if is_symmetrized(view1, view2): | |
# computing half of forward pass!' Half of the batch as using shared weights | |
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2]) | |
feat1, feat2 = interleave(feat1, feat2) | |
pos1, pos2 = interleave(pos1, pos2) | |
else: | |
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2) | |
return (shape1, shape2), (feat1, feat2), (pos1, pos2) | |
def _decoder(self, f1, pos1, f2, pos2): | |
final_output = [(f1, f2)] # before projection | |
# project to decoder dim | |
f1 = self.decoder_embed(f1) | |
f2 = self.decoder_embed(f2) | |
final_output.append((f1, f2)) | |
for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2): | |
# img1 side | |
f1, _ = blk1(*final_output[-1][::+1], pos1, pos2) | |
# img2 side | |
f2, _ = blk2(*final_output[-1][::-1], pos2, pos1) | |
# store the result | |
final_output.append((f1, f2)) | |
# normalize last output | |
del final_output[1] # duplicate with final_output[0] | |
final_output[-1] = tuple(map(self.dec_norm, final_output[-1])) | |
return zip(*final_output) | |
def _downstream_head(self, head_num, decout, img_shape): | |
B, S, D = decout[-1].shape | |
# img_shape = tuple(map(int, img_shape)) | |
head = getattr(self, f'head{head_num}') | |
return head(decout, img_shape) | |
def forward(self, view1, view2): | |
# encode the two images --> B,S,D | |
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2) | |
# combine all ref images into object-centric representation | |
dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2) | |
with torch.cuda.amp.autocast(enabled=False): | |
res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1) | |
res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2) | |
res2['pts3d_in_other_view'] = res2.pop('pts3d') # predict view2's pts3d in view1's frame | |
return res1, res2 | |