Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,10 +12,12 @@ from spann3r.datasets import Demo
|
|
12 |
from torch.utils.data import DataLoader
|
13 |
import trimesh
|
14 |
from scipy.spatial.transform import Rotation
|
15 |
-
import
|
|
|
|
|
16 |
|
17 |
# Default values
|
18 |
-
DEFAULT_CKPT_PATH = '
|
19 |
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
|
20 |
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
21 |
|
@@ -106,10 +108,42 @@ def pts3d_to_trimesh(img, pts3d, valid=None):
|
|
106 |
return dict(vertices=vertices, face_colors=face_colors, faces=faces)
|
107 |
|
108 |
model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
@spaces.GPU
|
111 |
@torch.no_grad()
|
112 |
-
def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False):
|
113 |
# Extract frames from video
|
114 |
demo_path = extract_frames(video_path)
|
115 |
|
@@ -131,36 +165,43 @@ def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False):
|
|
131 |
print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
|
132 |
|
133 |
# Process results
|
134 |
-
pts_all, images_all, conf_all = [], [], []
|
135 |
for j, view in enumerate(batch):
|
136 |
image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
|
137 |
pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
|
138 |
conf = preds[j]['conf'][0].cpu().data.numpy()
|
139 |
|
|
|
|
|
|
|
|
|
|
|
140 |
images_all.append((image[None, ...] + 1.0)/2.0)
|
141 |
pts_all.append(pts[None, ...])
|
142 |
conf_all.append(conf[None, ...])
|
|
|
143 |
|
144 |
images_all = np.concatenate(images_all, axis=0)
|
145 |
pts_all = np.concatenate(pts_all, axis=0) * 10
|
146 |
conf_all = np.concatenate(conf_all, axis=0)
|
|
|
147 |
|
148 |
# Create point cloud or mesh
|
149 |
conf_sig_all = (conf_all-1) / conf_all
|
150 |
-
|
151 |
|
152 |
scene = trimesh.Scene()
|
153 |
|
154 |
if as_pointcloud:
|
155 |
pcd = trimesh.PointCloud(
|
156 |
-
vertices=pts_all[
|
157 |
-
colors=images_all[
|
158 |
)
|
159 |
scene.add_geometry(pcd)
|
160 |
else:
|
161 |
meshes = []
|
162 |
for i in range(len(images_all)):
|
163 |
-
meshes.append(pts3d_to_trimesh(images_all[i], pts_all[i],
|
164 |
mesh = trimesh.Trimesh(**cat_meshes(meshes))
|
165 |
scene.add_geometry(mesh)
|
166 |
|
@@ -168,11 +209,11 @@ def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False):
|
|
168 |
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
|
169 |
scene.apply_transform(np.linalg.inv(OPENGL @ rot))
|
170 |
|
|
|
171 |
if as_pointcloud:
|
172 |
output_path = tempfile.mktemp(suffix='.ply')
|
173 |
else:
|
174 |
output_path = tempfile.mktemp(suffix='.obj')
|
175 |
-
|
176 |
scene.export(output_path)
|
177 |
|
178 |
# Clean up temporary directory
|
@@ -185,15 +226,16 @@ iface = gr.Interface(
|
|
185 |
inputs=[
|
186 |
gr.Video(label="Input Video"),
|
187 |
gr.Slider(0, 1, value=1e-3, label="Confidence Threshold"),
|
188 |
-
gr.Slider(1, 30, step=1, value=
|
189 |
-
gr.Checkbox(label="As Pointcloud", value=False)
|
|
|
190 |
],
|
191 |
outputs=[
|
192 |
-
gr.Model3D(label="3D Model
|
193 |
gr.Textbox(label="Status")
|
194 |
],
|
195 |
-
title="3D Reconstruction with Spatial Memory",
|
196 |
)
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
-
iface.launch()
|
|
|
12 |
from torch.utils.data import DataLoader
|
13 |
import trimesh
|
14 |
from scipy.spatial.transform import Rotation
|
15 |
+
from transformers import AutoModelForImageSegmentation
|
16 |
+
from torchvision import transforms
|
17 |
+
from PIL import Image
|
18 |
|
19 |
# Default values
|
20 |
+
DEFAULT_CKPT_PATH = 'https://huggingface.co/spaces/Stable-X/StableSpann3R/resolve/main/checkpoints/spann3r.pth'
|
21 |
DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth'
|
22 |
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
23 |
|
|
|
108 |
return dict(vertices=vertices, face_colors=face_colors, faces=faces)
|
109 |
|
110 |
model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE)
|
111 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True)
|
112 |
+
birefnet.to(DEFAULT_DEVICE)
|
113 |
+
birefnet.eval()
|
114 |
+
|
115 |
+
def extract_object(birefnet, image):
|
116 |
+
# Data settings
|
117 |
+
image_size = (1024, 1024)
|
118 |
+
transform_image = transforms.Compose([
|
119 |
+
transforms.Resize(image_size),
|
120 |
+
transforms.ToTensor(),
|
121 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
122 |
+
])
|
123 |
+
|
124 |
+
input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE)
|
125 |
+
|
126 |
+
# Prediction
|
127 |
+
with torch.no_grad():
|
128 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
129 |
+
pred = preds[0].squeeze()
|
130 |
+
pred_pil = transforms.ToPILImage()(pred)
|
131 |
+
mask = pred_pil.resize(image.size)
|
132 |
+
return mask
|
133 |
+
|
134 |
+
def generate_mask(image: np.ndarray):
|
135 |
+
# Convert numpy array to PIL Image
|
136 |
+
pil_image = Image.fromarray((image * 255).astype(np.uint8))
|
137 |
+
|
138 |
+
# Extract object and get mask
|
139 |
+
mask = extract_object(birefnet, pil_image)
|
140 |
+
|
141 |
+
# Convert mask to numpy array
|
142 |
+
mask_np = np.array(mask) / 255.0
|
143 |
+
return mask_np
|
144 |
|
|
|
145 |
@torch.no_grad()
|
146 |
+
def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False, remove_background=False):
|
147 |
# Extract frames from video
|
148 |
demo_path = extract_frames(video_path)
|
149 |
|
|
|
165 |
print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}')
|
166 |
|
167 |
# Process results
|
168 |
+
pts_all, images_all, conf_all, mask_all = [], [], [], []
|
169 |
for j, view in enumerate(batch):
|
170 |
image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
|
171 |
pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
|
172 |
conf = preds[j]['conf'][0].cpu().data.numpy()
|
173 |
|
174 |
+
if remove_background:
|
175 |
+
mask = generate_mask(image)
|
176 |
+
else:
|
177 |
+
mask = np.ones_like(conf) # Change this to match conf shape
|
178 |
+
|
179 |
images_all.append((image[None, ...] + 1.0)/2.0)
|
180 |
pts_all.append(pts[None, ...])
|
181 |
conf_all.append(conf[None, ...])
|
182 |
+
mask_all.append(mask[None, ...])
|
183 |
|
184 |
images_all = np.concatenate(images_all, axis=0)
|
185 |
pts_all = np.concatenate(pts_all, axis=0) * 10
|
186 |
conf_all = np.concatenate(conf_all, axis=0)
|
187 |
+
mask_all = np.concatenate(mask_all, axis=0)
|
188 |
|
189 |
# Create point cloud or mesh
|
190 |
conf_sig_all = (conf_all-1) / conf_all
|
191 |
+
combined_mask = (conf_sig_all > conf_thresh) & (mask_all > 0.5)
|
192 |
|
193 |
scene = trimesh.Scene()
|
194 |
|
195 |
if as_pointcloud:
|
196 |
pcd = trimesh.PointCloud(
|
197 |
+
vertices=pts_all[combined_mask].reshape(-1, 3),
|
198 |
+
colors=images_all[combined_mask].reshape(-1, 3)
|
199 |
)
|
200 |
scene.add_geometry(pcd)
|
201 |
else:
|
202 |
meshes = []
|
203 |
for i in range(len(images_all)):
|
204 |
+
meshes.append(pts3d_to_trimesh(images_all[i], pts_all[i], combined_mask[i]))
|
205 |
mesh = trimesh.Trimesh(**cat_meshes(meshes))
|
206 |
scene.add_geometry(mesh)
|
207 |
|
|
|
209 |
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
|
210 |
scene.apply_transform(np.linalg.inv(OPENGL @ rot))
|
211 |
|
212 |
+
# Save the scene as GLB
|
213 |
if as_pointcloud:
|
214 |
output_path = tempfile.mktemp(suffix='.ply')
|
215 |
else:
|
216 |
output_path = tempfile.mktemp(suffix='.obj')
|
|
|
217 |
scene.export(output_path)
|
218 |
|
219 |
# Clean up temporary directory
|
|
|
226 |
inputs=[
|
227 |
gr.Video(label="Input Video"),
|
228 |
gr.Slider(0, 1, value=1e-3, label="Confidence Threshold"),
|
229 |
+
gr.Slider(1, 30, step=1, value=5, label="Keyframe Interval"),
|
230 |
+
gr.Checkbox(label="As Pointcloud", value=False),
|
231 |
+
gr.Checkbox(label="Remove Background", value=False)
|
232 |
],
|
233 |
outputs=[
|
234 |
+
gr.Model3D(label="3D Model", display_mode="solid"),
|
235 |
gr.Textbox(label="Status")
|
236 |
],
|
237 |
+
title="3D Reconstruction with Spatial Memory and Background Removal",
|
238 |
)
|
239 |
|
240 |
if __name__ == "__main__":
|
241 |
+
iface.launch(server_name="0.0.0.0",)
|