import os import time import torch import numpy as np import gradio as gr import urllib.parse import tempfile import subprocess from dust3r.losses import L21 from spann3r.model import Spann3R from mast3r.model import AsymmetricMASt3R from spann3r.datasets import Demo from torch.utils.data import DataLoader import cv2 import json import glob from dust3r.post_process import estimate_focal_knowing_depth from mast3r.demo import get_reconstructed_scene from scipy.spatial.transform import Rotation from transformers import AutoModelForImageSegmentation from torchvision import transforms from PIL import Image import open3d as o3d from backend_utils import improved_multiway_registration, pts2normal, point2mesh, combine_and_clean_point_clouds from gs_utils import point2gs from pose_utils import solve_cemara from gradio.helpers import Examples as GradioExamples from gradio.utils import get_cache_folder from pathlib import Path import os import shutil import math import zipfile from pathlib import Path # Default values DEFAULT_CKPT_PATH = 'checkpoints/spann3r.pth' DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth' DEFAULT_MAST3R_PATH = 'https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth' DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' OPENGL = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) class Examples(GradioExamples): def __init__(self, *args, directory_name=None, **kwargs): super().__init__(*args, **kwargs, _initiated_directly=False) if directory_name is not None: self.cached_folder = get_cache_folder() / directory_name self.cached_file = Path(self.cached_folder) / "log.csv" self.create() def export_geometry(geometry, file_format='obj'): """ Export Open3D geometry (triangle mesh or point cloud) to a file. Args: geometry: Open3D geometry object (TriangleMesh or PointCloud) file_format: str, output format ('obj', 'ply', 'pcd') Returns: str: Path to the exported file Raises: ValueError: If geometry type is not supported or file format is invalid """ # Validate geometry type if not isinstance(geometry, (o3d.geometry.TriangleMesh, o3d.geometry.PointCloud)): raise ValueError("Geometry must be either TriangleMesh or PointCloud") # Validate and set file format supported_formats = { 'obj': '.obj', 'ply': '.ply', 'pcd': '.pcd' } if file_format.lower() not in supported_formats: raise ValueError(f"Unsupported file format. Supported formats: {list(supported_formats.keys())}") # Create temporary file with appropriate extension output_path = tempfile.mktemp(suffix=supported_formats[file_format.lower()]) # Create a copy of the geometry to avoid modifying the original geometry_copy = geometry # Apply rotation rot = np.eye(4) rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() transform = np.linalg.inv(OPENGL @ rot) # Transform geometry geometry_copy.transform(transform) # Export based on geometry type and format try: if isinstance(geometry_copy, o3d.geometry.TriangleMesh): if file_format.lower() == 'obj': o3d.io.write_triangle_mesh(output_path, geometry_copy, write_ascii=False, compressed=True) elif file_format.lower() == 'ply': o3d.io.write_triangle_mesh(output_path, geometry_copy, write_ascii=False, compressed=True) elif isinstance(geometry_copy, o3d.geometry.PointCloud): if file_format.lower() == 'pcd': o3d.io.write_point_cloud(output_path, geometry_copy, write_ascii=False, compressed=True) elif file_format.lower() == 'ply': o3d.io.write_point_cloud(output_path, geometry_copy, write_ascii=False, compressed=True) else: raise ValueError(f"Format {file_format} not supported for point clouds. Use 'ply' or 'pcd'") return output_path except Exception as e: # Clean up temporary file if export fails if os.path.exists(output_path): os.remove(output_path) raise RuntimeError(f"Failed to export geometry: {str(e)}") def extract_frames(video_path: str, duration: float = 20.0, fps: float = 3.0) -> str: temp_dir = tempfile.mkdtemp() output_path = os.path.join(temp_dir, "%03d.jpg") filter_complex = f"select='if(lt(t,{duration}),1,0)',fps={fps}" command = [ "ffmpeg", "-i", video_path, "-vf", filter_complex, "-vsync", "0", output_path ] subprocess.run(command, check=True) return temp_dir def load_ckpt(model_path_or_url, verbose=True): if verbose: print('... loading model from', model_path_or_url) is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https') if is_url: ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose) else: ckpt = torch.load(model_path_or_url, map_location='cpu') return ckpt def load_model(ckpt_path, device): model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH, use_feat=False).to(device) model.load_state_dict(load_ckpt(ckpt_path)['model']) model.eval() return model model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE) birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True) birefnet.to(DEFAULT_DEVICE) birefnet.eval() def extract_object(birefnet, image): # Data settings image_size = (1024, 1024) transform_image = transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE) # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image.size) return mask def generate_mask(image: np.ndarray): # Convert numpy array to PIL Image pil_image = Image.fromarray((image * 255).astype(np.uint8)) # Extract object and get mask mask = extract_object(birefnet, pil_image) # Convert mask to numpy array mask_np = np.array(mask) / 255.0 return mask_np def center_pcd(pcd: o3d.geometry.PointCloud, normalize=False) -> o3d.geometry.PointCloud: # Convert to numpy array points = np.asarray(pcd.points) # Compute centroid centroid = np.mean(points, axis=0) # Center the point cloud centered_points = points - centroid if normalize: # Compute the maximum distance from the center max_distance = np.max(np.linalg.norm(centered_points, axis=1)) # Normalize the point cloud normalized_points = centered_points / max_distance # Create a new point cloud with the normalized points normalized_pcd = o3d.geometry.PointCloud() normalized_pcd.points = o3d.utility.Vector3dVector(normalized_points) # If the original point cloud has colors, normalize them too if pcd.has_colors(): normalized_pcd.colors = pcd.colors # If the original point cloud has normals, copy them if pcd.has_normals(): normalized_pcd.normals = pcd.normals return normalized_pcd else: pcd.points = o3d.utility.Vector3dVector(centered_points) return pcd def center_mesh(mesh: o3d.geometry.TriangleMesh, normalize=False) -> o3d.geometry.TriangleMesh: # Convert to numpy array vertices = np.asarray(mesh.vertices) # Compute centroid centroid = np.mean(vertices, axis=0) # Center the mesh centered_vertices = vertices - centroid if normalize: # Compute the maximum distance from the center max_distance = np.max(np.linalg.norm(centered_vertices, axis=1)) # Normalize the mesh normalized_vertices = centered_vertices / max_distance # Create a new mesh with the normalized vertices normalized_mesh = o3d.geometry.TriangleMesh() normalized_mesh.vertices = o3d.utility.Vector3dVector(normalized_vertices) normalized_mesh.triangles = mesh.triangles # If the original mesh has vertex colors, copy them if mesh.has_vertex_colors(): normalized_mesh.vertex_colors = mesh.vertex_colors # If the original mesh has vertex normals, normalize them if mesh.has_vertex_normals(): vertex_normals = np.asarray(mesh.vertex_normals) normalized_vertex_normals = vertex_normals / np.linalg.norm(vertex_normals, axis=1, keepdims=True) normalized_mesh.vertex_normals = o3d.utility.Vector3dVector(normalized_vertex_normals) return normalized_mesh else: # Update the mesh with the centered vertices mesh.vertices = o3d.utility.Vector3dVector(centered_vertices) return mesh def get_transform_json(H, W, focal, poses_all): transform_dict = { 'w': W, 'h': H, 'fl_x': focal.item(), 'fl_y': focal.item(), 'cx': W/2, 'cy': H/2, } frames = [] for i, pose in enumerate(poses_all): # CV2 GL format pose[:3, 1] *= -1 pose[:3, 2] *= -1 frame = { 'w': W, 'h': H, 'fl_x': focal.item(), 'fl_y': focal.item(), 'cx': W/2, 'cy': H/2, 'file_path': f"images/{i:04d}.jpg", "mask_path": f"masks/{i:04d}.png", 'transform_matrix': pose.tolist() } frames.append(frame) transform_dict['frames'] = frames return transform_dict def organize_and_zip_output(images_all, masks_all, transform_json_path, output_dir=None): """ Organizes reconstruction outputs into a specific directory structure and creates a zip file. Args: images_all: List of numpy arrays containing images masks_all: List of numpy arrays containing masks transform_json_path: Path to the transform.json file output_dir: Optional custom output directory name Returns: str: Path to the created zip file """ try: # Create temporary directory with timestamp timestamp = time.strftime("%Y%m%d_%H%M%S") base_dir = output_dir or f"reconstruction_{timestamp}" os.makedirs(base_dir, exist_ok=True) # Create subdirectories images_dir = os.path.join(base_dir, "images") masks_dir = os.path.join(base_dir, "masks") os.makedirs(images_dir, exist_ok=True) os.makedirs(masks_dir, exist_ok=True) # Save images for i, image in enumerate(images_all): image_path = os.path.join(images_dir, f"{i:04d}.jpg") cv2.imwrite(image_path, (image * 255).astype(np.uint8)[..., ::-1], [int(cv2.IMWRITE_JPEG_QUALITY), 90]) # Save masks for i, mask in enumerate(masks_all): mask_path = os.path.join(masks_dir, f"{i:04d}.png") cv2.imwrite(mask_path, (mask * 255).astype(np.uint8)) # Copy transform.json shutil.copy2(transform_json_path, os.path.join(base_dir, "transforms.json")) # Create zip file zip_path = f"{base_dir}.zip" with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, _, files in os.walk(base_dir): for file in files: file_path = os.path.join(root, file) arcname = os.path.relpath(file_path, base_dir) zipf.write(file_path, arcname) return zip_path finally: # Clean up temporary directories and files if os.path.exists(base_dir): shutil.rmtree(base_dir) if os.path.exists(transform_json_path): os.remove(transform_json_path) def get_keyframes(temp_dir: str, kf_every: int = 10): """ Select keyframes from a directory of extracted frames at specified intervals Args: temp_dir: Directory containing extracted frames (named as 001.jpg, 002.jpg, etc.) kf_every: Select every Nth frame as a keyframe Returns: List[str]: Sorted list of paths to selected keyframe images """ # Get all jpg files in the directory frame_paths = glob.glob(os.path.join(temp_dir, "*.jpg")) # Sort frames by number to ensure correct order frame_paths.sort(key=lambda x: int(Path(x).stem)) # Select keyframes at specified interval keyframe_paths = frame_paths[::kf_every] # Ensure we have at least 2 frames for reconstruction if len(keyframe_paths) < 2: if len(frame_paths) >= 2: # If we have at least 2 frames, use first and last keyframe_paths = [frame_paths[0], frame_paths[-1]] else: raise ValueError(f"Not enough frames found in {temp_dir}. Need at least 2 frames for reconstruction.") return keyframe_paths @torch.no_grad() def reconstruct(video_path, conf_thresh, kf_every, remove_background=False, enable_registration=True, output_3d_model=True): # Extract frames from video demo_path = extract_frames(video_path) # Load dataset dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every) dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0) batch = next(iter(dataloader)) for view in batch: view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True) demo_name = os.path.basename(video_path) print(f'Started reconstruction for {demo_name}') start = time.time() preds, preds_all = model.forward(batch) end = time.time() fps = len(batch) / (end - start) print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}') # Process results pcds = [] poses_all = [] cameras_all = [] images_all = [] masks_all = [] last_focal = None ##### estimate focal length _, H, W, _ = preds[0]['pts3d'].shape pp = torch.tensor((W/2, H/2)) focal = estimate_focal_knowing_depth(preds[0]['pts3d'].cpu(), pp, focal_mode='weiszfeld') print(f'Estimated focal of first camera: {focal.item()} (224x224)') intrinsic = np.eye(3) intrinsic[0, 0] = focal intrinsic[1, 1] = focal intrinsic[:2, 2] = pp for j, view in enumerate(batch): image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0] image = (image + 1) / 2 mask = view['valid_mask'].cpu().numpy()[0] pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0] pts_normal = pts2normal(preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'][0]).cpu().numpy() ##### Solve PnP-RANSAC u, v = np.meshgrid(np.arange(W), np.arange(H)) points_2d = np.stack((u, v), axis=-1) dist_coeffs = np.zeros(4).astype(np.float32) success, rotation_vector, translation_vector, inliers = cv2.solvePnPRansac( pts.reshape(-1, 3).astype(np.float32), points_2d.reshape(-1, 2).astype(np.float32), intrinsic.astype(np.float32), dist_coeffs) rotation_matrix, _ = cv2.Rodrigues(rotation_vector) # Extrinsic parameters (4x4 matrix) extrinsic_matrix = np.hstack((rotation_matrix, translation_vector.reshape(-1, 1))) extrinsic_matrix = np.vstack((extrinsic_matrix, [0, 0, 0, 1])) poses_all.append(np.linalg.inv(extrinsic_matrix)) conf = preds[j]['conf'][0].cpu().data.numpy() conf_sig = (conf - 1) / conf if remove_background: mask = generate_mask(image) else: mask = np.ones_like(conf) combined_mask = (conf_sig > conf_thresh) & (mask > 0.5) camera, last_focal = solve_cemara(torch.tensor(pts), torch.tensor(conf_sig) > 0.001, "cuda", focal=last_focal) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pts[combined_mask]) pcd.colors = o3d.utility.Vector3dVector(image[combined_mask]) pcd.normals = o3d.utility.Vector3dVector(pts_normal[combined_mask]) pcds.append(pcd) images_all.append(image) masks_all.append(mask) cameras_all.append(camera) transform_dict = get_transform_json(H, W, focal, poses_all) temp_json_file = tempfile.mktemp(suffix='.json') with open(os.path.join(temp_json_file), 'w') as f: json.dump(transform_dict, f, indent=4) pcd_combined = combine_and_clean_point_clouds(pcds, voxel_size=0.001) o3d_geometry = point2mesh(pcd_combined) o3d_geometry_centered = center_mesh(o3d_geometry, normalize=True) # Create coarse result coarse_output_path = export_geometry(o3d_geometry_centered) if enable_registration: pcd_combined, _, _ = improved_multiway_registration(pcds, voxel_size=0.01) pcd_combined = center_pcd(pcd_combined) # zip_path = organize_and_zip_output(images_all, masks_all, temp_json_file) if output_3d_model: gs_output_path = tempfile.mktemp(suffix='.ply') point2gs(gs_output_path, pcd_combined) return coarse_output_path, [gs_output_path, temp_json_file] else: pcd_output_path = export_geometry(pcd_combined, file_format='ply') return coarse_output_path, [pcd_output_path, temp_json_file] example_videos = [os.path.join('./examples', f) for f in os.listdir('./examples') if f.endswith(('.mp4', '.webm'))] # Update the Gradio interface with improved layout with gr.Blocks( title="StableRecon: 3D Reconstruction from Video", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } h1 { text-align: center; display: block; } h2 { text-align: center; display: block; } h3 { text-align: center; display: block; } .md_feedback li { margin-bottom: 0px !important; } """, head=""" """, ) as iface: gr.Markdown( """ # StableRecon: Making Video to 3D easy