# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # base class for implementing datasets # -------------------------------------------------------- import PIL.Image import PIL.Image as Image import numpy as np import torch import copy from mast3r.datasets.utils.cropping import (extract_correspondences_from_pts3d, gen_random_crops, in2d_rect, crop_to_homography) import mast3r.utils.path_to_dust3r # noqa from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset, view_name, is_good_type # noqa from dust3r.datasets.utils.transforms import ImgNorm from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates, geotrf, depthmap_to_camera_coordinates import dust3r.datasets.utils.cropping as cropping class MASt3RBaseStereoViewDataset(BaseStereoViewDataset): def __init__(self, *, # only keyword arguments split=None, resolution=None, # square_size or (width, height) or list of [(width,height), ...] transform=ImgNorm, aug_crop=False, aug_swap=False, aug_monocular=False, aug_portrait_or_landscape=True, # automatic choice between landscape/portrait when possible aug_rot90=False, n_corres=0, nneg=0, n_tentative_crops=4, seed=None): super().__init__(split=split, resolution=resolution, transform=transform, aug_crop=aug_crop, seed=seed) self.is_metric_scale = False # by default a dataset is not metric scale, subclasses can overwrite this self.aug_swap = aug_swap self.aug_monocular = aug_monocular self.aug_portrait_or_landscape = aug_portrait_or_landscape self.aug_rot90 = aug_rot90 self.n_corres = n_corres self.nneg = nneg assert self.n_corres == 'all' or isinstance(self.n_corres, int) or (isinstance(self.n_corres, list) and len( self.n_corres) == self.num_views), f"Error, n_corres should either be 'all', a single integer or a list of length {self.num_views}" assert self.nneg == 0 or self.n_corres != 'all' self.n_tentative_crops = n_tentative_crops def _swap_view_aug(self, views): if self._rng.random() < 0.5: views.reverse() def _crop_resize_if_necessary(self, image, depthmap, intrinsics, resolution, rng=None, info=None): """ This function: - first downsizes the image with LANCZOS inteprolation, which is better than bilinear interpolation in """ if not isinstance(image, PIL.Image.Image): image = PIL.Image.fromarray(image) # transpose the resolution if necessary W, H = image.size # new size assert resolution[0] >= resolution[1] if H > 1.1 * W: # image is portrait mode resolution = resolution[::-1] elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]: # image is square, so we chose (portrait, landscape) randomly if rng.integers(2) and self.aug_portrait_or_landscape: resolution = resolution[::-1] # high-quality Lanczos down-scaling target_resolution = np.array(resolution) image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, target_resolution) # actual cropping (if necessary) with bilinear interpolation offset_factor = 0.5 intrinsics2 = cropping.camera_matrix_of_crop(intrinsics, image.size, resolution, offset_factor=offset_factor) crop_bbox = cropping.bbox_from_intrinsics_in_out(intrinsics, intrinsics2, resolution) image, depthmap, intrinsics2 = cropping.crop_image_depthmap(image, depthmap, intrinsics, crop_bbox) return image, depthmap, intrinsics2 def generate_crops_from_pair(self, view1, view2, resolution, aug_crop_arg, n_crops=4, rng=np.random): views = [view1, view2] if aug_crop_arg is False: # compatibility for i in range(2): view = views[i] view['img'], view['depthmap'], view['camera_intrinsics'] = self._crop_resize_if_necessary(view['img'], view['depthmap'], view['camera_intrinsics'], resolution, rng=rng) view['pts3d'], view['valid_mask'] = depthmap_to_absolute_camera_coordinates(view['depthmap'], view['camera_intrinsics'], view['camera_pose']) return # extract correspondences corres = extract_correspondences_from_pts3d(*views, target_n_corres=None, rng=rng) # generate 4 random crops in each view view_crops = [] crops_resolution = [] corres_msks = [] for i in range(2): if aug_crop_arg == 'auto': S = min(views[i]['img'].size) R = min(resolution) aug_crop = S * (S - R) // R aug_crop = max(.1 * S, aug_crop) # for cropping: augment scale of at least 10%, and more if possible else: aug_crop = aug_crop_arg # tranpose the target resolution if necessary assert resolution[0] >= resolution[1] W, H = imsize = views[i]['img'].size crop_resolution = resolution if H > 1.1 * W: # image is portrait mode crop_resolution = resolution[::-1] elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]: # image is square, so we chose (portrait, landscape) randomly if rng.integers(2): crop_resolution = resolution[::-1] crops = gen_random_crops(imsize, n_crops, crop_resolution, aug_crop=aug_crop, rng=rng) view_crops.append(crops) crops_resolution.append(crop_resolution) # compute correspondences corres_msks.append(in2d_rect(corres[i], crops)) # compute IoU for each intersection = np.float32(corres_msks[0]).T @ np.float32(corres_msks[1]) # select best pair of crops best = np.unravel_index(intersection.argmax(), (n_crops, n_crops)) crops = [view_crops[i][c] for i, c in enumerate(best)] # crop with the homography for i in range(2): view = views[i] imsize, K_new, R, H = crop_to_homography(view['camera_intrinsics'], crops[i], crops_resolution[i]) # imsize, K_new, H = upscale_homography(imsize, resolution, K_new, H) # update camera params K_old = view['camera_intrinsics'] view['camera_intrinsics'] = K_new view['camera_pose'] = view['camera_pose'].copy() view['camera_pose'][:3, :3] = view['camera_pose'][:3, :3] @ R # apply homography to image and depthmap homo8 = (H / H[2, 2]).ravel().tolist()[:8] view['img'] = view['img'].transform(imsize, Image.Transform.PERSPECTIVE, homo8, resample=Image.Resampling.BICUBIC) depthmap2 = depthmap_to_camera_coordinates(view['depthmap'], K_old)[0] @ R[:, 2] view['depthmap'] = np.array(Image.fromarray(depthmap2).transform( imsize, Image.Transform.PERSPECTIVE, homo8)) if 'track_labels' in view: # convert from uint64 --> uint32, because PIL.Image cannot handle uint64 mapping, track_labels = np.unique(view['track_labels'], return_inverse=True) track_labels = track_labels.astype(np.uint32).reshape(view['track_labels'].shape) # homography transformation res = np.array(Image.fromarray(track_labels).transform(imsize, Image.Transform.PERSPECTIVE, homo8)) view['track_labels'] = mapping[res] # mapping back to uint64 # recompute 3d points from scratch view['pts3d'], view['valid_mask'] = depthmap_to_absolute_camera_coordinates(view['depthmap'], view['camera_intrinsics'], view['camera_pose']) def __getitem__(self, idx): if isinstance(idx, tuple): # the idx is specifying the aspect-ratio idx, ar_idx = idx else: assert len(self._resolutions) == 1 ar_idx = 0 # set-up the rng if self.seed: # reseed for each __getitem__ self._rng = np.random.default_rng(seed=self.seed + idx) elif not hasattr(self, '_rng'): seed = torch.initial_seed() # this is different for each dataloader process self._rng = np.random.default_rng(seed=seed) # over-loaded code resolution = self._resolutions[ar_idx] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler) views = self._get_views(idx, resolution, self._rng) assert len(views) == self.num_views for v, view in enumerate(views): assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" view['idx'] = (idx, ar_idx, v) view['is_metric_scale'] = self.is_metric_scale assert 'camera_intrinsics' in view if 'camera_pose' not in view: view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32) else: assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}' assert 'pts3d' not in view assert 'valid_mask' not in view assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}' pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) view['pts3d'] = pts3d view['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1) self.generate_crops_from_pair(views[0], views[1], resolution=resolution, aug_crop_arg=self.aug_crop, n_crops=self.n_tentative_crops, rng=self._rng) for v, view in enumerate(views): # encode the image width, height = view['img'].size view['true_shape'] = np.int32((height, width)) view['img'] = self.transform(view['img']) # Pixels for which depth is fundamentally undefined view['sky_mask'] = (view['depthmap'] < 0) if self.aug_swap: self._swap_view_aug(views) if self.aug_monocular: if self._rng.random() < self.aug_monocular: views = [copy.deepcopy(views[0]) for _ in range(len(views))] # automatic extraction of correspondences from pts3d + pose if self.n_corres > 0 and ('corres' not in view): corres1, corres2, valid = extract_correspondences_from_pts3d(*views, self.n_corres, self._rng, nneg=self.nneg) views[0]['corres'] = corres1 views[1]['corres'] = corres2 views[0]['valid_corres'] = valid views[1]['valid_corres'] = valid if self.aug_rot90 is False: pass elif self.aug_rot90 == 'same': rotate_90(views, k=self._rng.choice(4)) elif self.aug_rot90 == 'diff': rotate_90(views[:1], k=self._rng.choice(4)) rotate_90(views[1:], k=self._rng.choice(4)) else: raise ValueError(f'Bad value for {self.aug_rot90=}') # check data-types metric_scale for v, view in enumerate(views): if 'corres' not in view: view['corres'] = np.full((self.n_corres, 2), np.nan, dtype=np.float32) # check all datatypes for key, val in view.items(): res, err_msg = is_good_type(key, val) assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" K = view['camera_intrinsics'] # check shapes assert view['depthmap'].shape == view['img'].shape[1:] assert view['depthmap'].shape == view['pts3d'].shape[:2] assert view['depthmap'].shape == view['valid_mask'].shape # last thing done! for view in views: # transpose to make sure all views are the same size transpose_to_landscape(view) # this allows to check whether the RNG is is the same state each time view['rng'] = int.from_bytes(self._rng.bytes(4), 'big') return views def transpose_to_landscape(view, revert=False): height, width = view['true_shape'] if width < height: if revert: height, width = width, height # rectify portrait to landscape assert view['img'].shape == (3, height, width) view['img'] = view['img'].swapaxes(1, 2) assert view['valid_mask'].shape == (height, width) view['valid_mask'] = view['valid_mask'].swapaxes(0, 1) assert view['sky_mask'].shape == (height, width) view['sky_mask'] = view['sky_mask'].swapaxes(0, 1) assert view['depthmap'].shape == (height, width) view['depthmap'] = view['depthmap'].swapaxes(0, 1) assert view['pts3d'].shape == (height, width, 3) view['pts3d'] = view['pts3d'].swapaxes(0, 1) # transpose x and y pixels view['camera_intrinsics'] = view['camera_intrinsics'][[1, 0, 2]] # transpose correspondences x and y view['corres'] = view['corres'][:, [1, 0]] def rotate_90(views, k=1): from scipy.spatial.transform import Rotation # print('rotation =', k) RT = np.eye(4, dtype=np.float32) RT[:3, :3] = Rotation.from_euler('z', 90 * k, degrees=True).as_matrix() for view in views: view['img'] = torch.rot90(view['img'], k=k, dims=(-2, -1)) # WARNING!! dims=(-1,-2) != dims=(-2,-1) view['depthmap'] = np.rot90(view['depthmap'], k=k).copy() view['camera_pose'] = view['camera_pose'] @ RT RT2 = np.eye(3, dtype=np.float32) RT2[:2, :2] = RT[:2, :2] * ((1, -1), (-1, 1)) H, W = view['depthmap'].shape if k % 4 == 0: pass elif k % 4 == 1: # top-left (0,0) pixel becomes (0,H-1) RT2[:2, 2] = (0, H - 1) elif k % 4 == 2: # top-left (0,0) pixel becomes (W-1,H-1) RT2[:2, 2] = (W - 1, H - 1) elif k % 4 == 3: # top-left (0,0) pixel becomes (W-1,0) RT2[:2, 2] = (W - 1, 0) else: raise ValueError(f'Bad value for {k=}') view['camera_intrinsics'][:2, 2] = geotrf(RT2, view['camera_intrinsics'][:2, 2]) if k % 2 == 1: K = view['camera_intrinsics'] np.fill_diagonal(K, K.diagonal()[[1, 0, 2]]) pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) view['pts3d'] = pts3d view['valid_mask'] = np.rot90(view['valid_mask'], k=k).copy() view['sky_mask'] = np.rot90(view['sky_mask'], k=k).copy() view['corres'] = geotrf(RT2, view['corres']).round().astype(view['corres'].dtype) view['true_shape'] = np.int32((H, W))