import os import time import torch import numpy as np import gradio as gr import urllib.parse import tempfile import subprocess from dust3r.losses import L21 from spann3r.model import Spann3R from spann3r.datasets import Demo from torch.utils.data import DataLoader import trimesh from scipy.spatial.transform import Rotation from transformers import AutoModelForImageSegmentation from torchvision import transforms from PIL import Image import open3d as o3d from backend_utils import improved_multiway_registration # Default values DEFAULT_CKPT_PATH = './checkpoints/spann3r.pth' DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth' DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' OPENGL = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) def extract_frames(video_path: str) -> str: temp_dir = tempfile.mkdtemp() output_path = os.path.join(temp_dir, "%03d.jpg") command = [ "ffmpeg", "-i", video_path, "-vf", "fps=1", output_path ] subprocess.run(command, check=True) return temp_dir def cat_meshes(meshes): vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes]) n_vertices = np.cumsum([0]+[len(v) for v in vertices]) for i in range(len(faces)): faces[i][:] += n_vertices[i] vertices = np.concatenate(vertices) colors = np.concatenate(colors) faces = np.concatenate(faces) return dict(vertices=vertices, face_colors=colors, faces=faces) def load_ckpt(model_path_or_url, verbose=True): if verbose: print('... loading model from', model_path_or_url) is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https') if is_url: ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose) else: ckpt = torch.load(model_path_or_url, map_location='cpu') return ckpt def load_model(ckpt_path, device): model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH, use_feat=False).to(device) model.load_state_dict(load_ckpt(ckpt_path)['model']) model.eval() return model def pts3d_to_trimesh(img, pts3d, valid=None): H, W, THREE = img.shape assert THREE == 3 assert img.shape == pts3d.shape vertices = pts3d.reshape(-1, 3) # make squares: each pixel == 2 triangles idx = np.arange(len(vertices)).reshape(H, W) idx1 = idx[:-1, :-1].ravel() # top-left corner idx2 = idx[:-1, +1:].ravel() # right-left corner idx3 = idx[+1:, :-1].ravel() # bottom-left corner idx4 = idx[+1:, +1:].ravel() # bottom-right corner faces = np.concatenate(( np.c_[idx1, idx2, idx3], np.c_[idx3, idx2, idx1], # same triangle, but backward (cheap solution to cancel face culling) np.c_[idx2, idx3, idx4], np.c_[idx4, idx3, idx2], # same triangle, but backward (cheap solution to cancel face culling) ), axis=0) # prepare triangle colors face_colors = np.concatenate(( img[:-1, :-1].reshape(-1, 3), img[:-1, :-1].reshape(-1, 3), img[+1:, +1:].reshape(-1, 3), img[+1:, +1:].reshape(-1, 3) ), axis=0) # remove invalid faces if valid is not None: assert valid.shape == (H, W) valid_idxs = valid.ravel() valid_faces = valid_idxs[faces].all(axis=-1) faces = faces[valid_faces] face_colors = face_colors[valid_faces] assert len(faces) == len(face_colors) return dict(vertices=vertices, face_colors=face_colors, faces=faces) model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE) birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True) birefnet.to(DEFAULT_DEVICE) birefnet.eval() def extract_object(birefnet, image): # Data settings image_size = (1024, 1024) transform_image = transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE) # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image.size) return mask def generate_mask(image: np.ndarray): # Convert numpy array to PIL Image pil_image = Image.fromarray((image * 255).astype(np.uint8)) # Extract object and get mask mask = extract_object(birefnet, pil_image) # Convert mask to numpy array mask_np = np.array(mask) / 255.0 return mask_np @torch.no_grad() def reconstruct(video_path, conf_thresh, kf_every, as_pointcloud=False, remove_background=False): # Extract frames from video demo_path = extract_frames(video_path) # Load dataset dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every) dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0) batch = next(iter(dataloader)) for view in batch: view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True) demo_name = os.path.basename(video_path) print(f'Started reconstruction for {demo_name}') start = time.time() preds, preds_all = model.forward(batch) end = time.time() fps = len(batch) / (end - start) print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}') # Process results pts_all, images_all, conf_all, mask_all = [], [], [], [] for j, view in enumerate(batch): image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0] pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0] conf = preds[j]['conf'][0].cpu().data.numpy() if remove_background: mask = generate_mask(image) else: mask = np.ones_like(conf) images_all.append((image[None, ...] + 1.0)/2.0) pts_all.append(pts[None, ...]) conf_all.append(conf[None, ...]) mask_all.append(mask[None, ...]) images_all = np.concatenate(images_all, axis=0) pts_all = np.concatenate(pts_all, axis=0) * 10 conf_all = np.concatenate(conf_all, axis=0) mask_all = np.concatenate(mask_all, axis=0) # Create point cloud or mesh conf_sig_all = (conf_all-1) / conf_all combined_mask = (conf_sig_all > conf_thresh) & (mask_all > 0.5) # Create coarse result coarse_scene = create_scene(pts_all, images_all, combined_mask, as_pointcloud) coarse_output_path = save_scene(coarse_scene, as_pointcloud) yield coarse_output_path, None, f"Reconstruction completed. FPS: {fps:.2f}" # Create point clouds for multiway registration pcds = [] for j in range(len(pts_all)): pcd = o3d.geometry.PointCloud() mask = combined_mask[j] pcd.points = o3d.utility.Vector3dVector(pts_all[j][mask]) pcd.colors = o3d.utility.Vector3dVector(images_all[j][mask]) pcds.append(pcd) # Perform global optimization print("Performing global registration...") transformed_pcds, pose_graph = improved_multiway_registration(pcds, voxel_size=0.01) # Apply transformations from pose_graph to original pts_all transformed_pts_all = np.zeros_like(pts_all) for j in range(len(pts_all)): # Get the transformation matrix from the pose graph transformation = pose_graph.nodes[j].pose # Reshape pts_all[j] to (H*W, 3) H, W, _ = pts_all[j].shape pts_reshaped = pts_all[j].reshape(-1, 3) # Apply transformation to all points homogeneous_pts = np.hstack((pts_reshaped, np.ones((pts_reshaped.shape[0], 1)))) transformed_pts = (transformation @ homogeneous_pts.T).T[:, :3] # Reshape back to (H, W, 3) and store transformed_pts_all[j] = transformed_pts.reshape(H, W, 3) print(f"Original shape: {pts_all.shape}, Transformed shape: {transformed_pts_all.shape}") # Create refined result refined_scene = create_scene(transformed_pts_all, images_all, combined_mask, as_pointcloud) refined_output_path = save_scene(refined_scene, as_pointcloud) # Clean up temporary directory os.system(f"rm -rf {demo_path}") yield coarse_output_path, refined_output_path, f"Refinement completed. FPS: {fps:.2f}" def create_scene(pts_all, images_all, combined_mask, as_pointcloud): scene = trimesh.Scene() if as_pointcloud: pcd = trimesh.PointCloud( vertices=pts_all[combined_mask].reshape(-1, 3), colors=images_all[combined_mask].reshape(-1, 3) ) scene.add_geometry(pcd) else: meshes = [] for i in range(len(images_all)): meshes.append(pts3d_to_trimesh(images_all[i], pts_all[i], combined_mask[i])) mesh = trimesh.Trimesh(**cat_meshes(meshes)) scene.add_geometry(mesh) rot = np.eye(4) rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() scene.apply_transform(np.linalg.inv(OPENGL @ rot)) return scene def save_scene(scene, as_pointcloud): if as_pointcloud: output_path = tempfile.mktemp(suffix='.ply') else: output_path = tempfile.mktemp(suffix='.obj') scene.export(output_path) return output_path # Update the Gradio interface iface = gr.Interface( fn=reconstruct, inputs=[ gr.Video(label="Input Video"), gr.Slider(0, 1, value=1e-6, label="Confidence Threshold"), gr.Slider(1, 30, step=1, value=5, label="Keyframe Interval"), gr.Checkbox(label="As Pointcloud", value=False), gr.Checkbox(label="Remove Background", value=False) ], outputs=[ gr.Model3D(label="Coarse 3D Model", display_mode="solid"), gr.Model3D(label="Refined 3D Model", display_mode="solid"), gr.Textbox(label="Status") ], title="3D Reconstruction with Spatial Memory, Background Removal, and Global Optimization", ) if __name__ == "__main__": iface.launch(server_name="0.0.0.0",)