import os import cv2 import json import numpy as np import os.path as osp from collections import deque from dust3r.utils.image import imread_cv2 from .base_many_view_dataset import BaseManyViewDataset class DTU(BaseManyViewDataset): def __init__(self, num_seq=49, num_frames=5, min_thresh=10, max_thresh=30, test_id=None, full_video=False, sample_pairs=False, kf_every=1, *args, ROOT, **kwargs): self.ROOT = ROOT super().__init__(*args, **kwargs) self.num_seq = num_seq self.num_frames = num_frames self.max_thresh = max_thresh self.min_thresh = min_thresh self.test_id = test_id self.full_video = full_video self.kf_every = kf_every self.sample_pairs = sample_pairs # load all scenes self.load_all_scenes(ROOT) def __len__(self): return len(self.scene_list) * self.num_seq def load_all_scenes(self, base_dir): if self.test_id is None: self.scene_list = os.listdir(osp.join(base_dir)) print(f"Found {len(self.scene_list)} scenes in split {self.split}") else: if isinstance(self.test_id, list): self.scene_list = self.test_id else: self.scene_list = [self.test_id] print(f"Test_id: {self.test_id}") def load_cam_mvsnet(self, file, interval_scale=1): """ read camera txt file """ cam = np.zeros((2, 4, 4)) words = file.read().split() # read extrinsic for i in range(0, 4): for j in range(0, 4): extrinsic_index = 4 * i + j + 1 cam[0][i][j] = words[extrinsic_index] # read intrinsic for i in range(0, 3): for j in range(0, 3): intrinsic_index = 3 * i + j + 18 cam[1][i][j] = words[intrinsic_index] if len(words) == 29: cam[1][3][0] = words[27] cam[1][3][1] = float(words[28]) * interval_scale cam[1][3][2] = 192 cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2] elif len(words) == 30: cam[1][3][0] = words[27] cam[1][3][1] = float(words[28]) * interval_scale cam[1][3][2] = words[29] cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2] elif len(words) == 31: cam[1][3][0] = words[27] cam[1][3][1] = float(words[28]) * interval_scale cam[1][3][2] = words[29] cam[1][3][3] = words[30] else: cam[1][3][0] = 0 cam[1][3][1] = 0 cam[1][3][2] = 0 cam[1][3][3] = 0 extrinsic = cam[0].astype(np.float32) intrinsic = cam[1].astype(np.float32) return intrinsic, extrinsic def _get_views(self, idx, resolution, rng): scene_id = self.scene_list[idx // self.num_seq] seq_id = idx % self.num_seq print('Scene ID:', scene_id) image_path = osp.join(self.ROOT, scene_id, 'images') depth_path = osp.join(self.ROOT, scene_id, 'depths') mask_path = osp.join(self.ROOT, scene_id, 'binary_masks') cam_path = osp.join(self.ROOT, scene_id, 'cams') pairs_path = osp.join(self.ROOT, scene_id, 'pair.txt') if not self.full_video: img_idxs = self.sample_pairs(pairs_path, seq_id) else: img_idxs = sorted(os.listdir(image_path)) img_idxs = self.sample_frame_idx(img_idxs, rng, full_video=self.full_video) views = [] imgs_idxs = deque(img_idxs) while len(imgs_idxs) > 0: im_idx = imgs_idxs.pop() impath = osp.join(image_path, im_idx) depthpath = osp.join(depth_path, im_idx.replace('.jpg', '.npy')) campath = osp.join(cam_path, im_idx.replace('.jpg', '_cam.txt')) maskpath = osp.join(mask_path, im_idx.replace('.jpg', '.png')) rgb_image = imread_cv2(impath) depthmap = np.load(depthpath) depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) mask = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED)/255.0 mask = mask.astype(np.float32) mask[mask>0.5] = 1.0 mask[mask<0.5] = 0.0 mask = cv2.resize(mask, (depthmap.shape[1], depthmap.shape[0]), interpolation=cv2.INTER_NEAREST) kernel = np.ones((10, 10), np.uint8) # Define the erosion kernel mask = cv2.erode(mask, kernel, iterations=1) depthmap = depthmap * mask cur_intrinsics, camera_pose = self.load_cam_mvsnet(open(campath, 'r')) intrinsics = cur_intrinsics[:3, :3] camera_pose = np.linalg.inv(camera_pose) rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath) views.append(dict( img=rgb_image, depthmap=depthmap, camera_pose=camera_pose, camera_intrinsics=intrinsics, dataset='dtu', label=osp.join(scene_id, im_idx), instance=osp.split(impath)[1], )) return views