import os import cv2 import numpy as np import os.path as osp from collections import deque from dust3r.utils.image import imread_cv2 from .base_many_view_dataset import BaseManyViewDataset class Scannet(BaseManyViewDataset): def __init__(self, num_seq=100, num_frames=5, min_thresh=10, max_thresh=100, test_id=None, full_video=False, kf_every=1, *args, ROOT, **kwargs): self.ROOT = ROOT super().__init__(*args, **kwargs) self.num_seq = num_seq self.num_frames = num_frames self.max_thresh = max_thresh self.min_thresh = min_thresh self.test_id = test_id self.full_video = full_video self.kf_every = kf_every # load all scenes self.load_all_scenes(ROOT) def __len__(self): return len(self.scene_list) * self.num_seq def load_all_scenes(self, base_dir): self.folder = {'train': 'scans', 'val': 'scans', 'test': 'scans_test'}[self.split] if self.test_id is None: meta_split = osp.join(base_dir, 'splits', f'scannetv2_{self.split}.txt') if not osp.exists(meta_split): raise FileNotFoundError(f"Split file {meta_split} not found") with open(meta_split) as f: self.scene_list = f.read().splitlines() print(f"Found {len(self.scene_list)} scenes in split {self.split}") else: if isinstance(self.test_id, list): self.scene_list = self.test_id else: self.scene_list = [self.test_id] print(f"Test_id: {self.test_id}") def _get_views(self, idx, resolution, rng, attempts=0): scene_id = self.scene_list[idx // self.num_seq] # Load metadata intri_path = osp.join(self.ROOT, self.folder, scene_id, 'intrinsic/intrinsic_depth.txt') intri = np.loadtxt(intri_path).astype(np.float32)[:3, :3] # Load image data data_path = osp.join(self.ROOT, self.folder, scene_id, 'sensor_data') num_files = len([name for name in os.listdir(data_path) if 'color' in name]) img_idxs_ = [f'{i:06d}' for i in range(num_files)] imgs_idxs = self.sample_frame_idx(img_idxs_, rng, full_video=self.full_video) imgs_idxs = deque(imgs_idxs) views = [] while len(imgs_idxs) > 0: im_idx = imgs_idxs.popleft() # Load image data impath = osp.join(self.ROOT, self.folder, scene_id, 'sensor_data', f'frame-{im_idx}.color.jpg') depthpath = osp.join(self.ROOT, self.folder, scene_id, 'sensor_data', f'frame-{im_idx}.depth.png') posepath = osp.join(self.ROOT, self.folder, scene_id, 'sensor_data', f'frame-{im_idx}.pose.txt') rgb_image = imread_cv2(impath) depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) rgb_image = cv2.resize(rgb_image, (depthmap.shape[1], depthmap.shape[0])) depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0 camera_pose = np.loadtxt(posepath).astype(np.float32) rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( rgb_image, depthmap, intri, resolution, rng=rng, info=impath) # Check if the image is valid num_valid = (depthmap > 0.0).sum() if num_valid == 0 or (not np.isfinite(camera_pose).all()): if self.full_video: print(f"Warning: No valid depthmap found for {impath}") continue else: if attempts >= 5: new_idx = rng.integers(0, self.__len__()-1) return self._get_views(new_idx, resolution, rng) return self._get_views(idx, resolution, rng, attempts+1) views.append(dict( img=rgb_image, depthmap=depthmap, camera_pose=camera_pose, camera_intrinsics=intrinsics, dataset='scannet', label=osp.join(scene_id, im_idx), instance=osp.split(impath)[1], )) return views if __name__ == "__main__": num_frames=5 print('loading dataset') dataset = Scannet(split='train', ROOT="./data/scannet_simple", resolution=224, num_seq=100, max_thresh=100)