File size: 2,151 Bytes
9e8cfa1
 
 
 
 
8c42033
7316fdd
8c42033
 
 
 
9e8cfa1
 
 
 
 
 
 
 
 
 
 
 
 
8c42033
 
9e8cfa1
8c42033
 
9e8cfa1
 
 
 
 
 
 
 
7316fdd
9e8cfa1
 
 
7316fdd
 
9e8cfa1
 
 
 
db0cc84
9e8cfa1
 
db0cc84
9e8cfa1
7316fdd
db0cc84
 
 
 
 
 
 
 
 
9e8cfa1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
import pinecone
from makechain import get_chain
from langchain.vectorstores.pinecone import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
import os

PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX_NAME")
PINECONE_ENVIRONMENT = os.environ.get("PINECONE_ENVIRONMENT")
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
st.title("Ask the Black@Stanford Exhibit")
st.sidebar.header("You can ask questions of interviews with Black Stanford students and faculty from the University "
                  "Archives")
st.sidebar.info(
    '''This is a web application that allows you to interact with 
       the Stanford Archives.
       Enter a **Question** in the **text box** and **press enter** to receive 
       a **response** from our ChatBot.
       '''
)

# create Vectorstore
pinecone.init(
    api_key=PINECONE_API_KEY,  # find at app.pinecone.io
    environment=PINECONE_ENVIRONMENT  # next to api key in console
)
index = pinecone.Index(index_name=PINECONE_INDEX_NAME)
embed = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
text_field = "text"
vectorStore = Pinecone(
    index, embed.embed_query, text_field
)

# create chain
qa_chain = get_chain(vectorStore)


def main():
    global query

    user_query = st.text_input("Enter your question here")
    if user_query != ":q" and user_query != "":
        # Pass the query to the ChatGPT function
        query = user_query.strip().replace('\n', ' ')
        response = qa_chain(
            {
                'query': query,
            }
        )
        st.write(f"{response['result']}")
        st.write("Sources: ")

        documents = response['source_documents']
        for document in documents:
            page_content = document.page_content
            source_url = document.metadata['source']
            st.write("Page Content")
            st.write(page_content)
            st.write("Source URL:")
            st.write(source_url)
            st.markdown("""---""")
try:
    main()
except Exception as e:
    st.write("An error occurred while running the application: ", e)