File size: 5,326 Bytes
b9fe2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import logging
import sys
from io import BytesIO

import pandas as pd
from openpyxl import Workbook, load_workbook

from rag.nlp import find_codec


class RAGFlowExcelParser:

    @staticmethod
    def _load_excel_to_workbook(file_like_object):
        if isinstance(file_like_object, bytes):
            file_like_object = BytesIO(file_like_object)

        # Read first 4 bytes to determine file type
        file_like_object.seek(0)
        file_head = file_like_object.read(4)
        file_like_object.seek(0)

        if not (file_head.startswith(b'PK\x03\x04') or file_head.startswith(b'\xD0\xCF\x11\xE0')):
            logging.info("****wxy: Not an Excel file, converting CSV to Excel Workbook")

            try:
                file_like_object.seek(0)
                df = pd.read_csv(file_like_object)
                return RAGFlowExcelParser._dataframe_to_workbook(df)

            except Exception as e_csv:
                raise Exception(f"****wxy: Failed to parse CSV and convert to Excel Workbook: {e_csv}")

        try:
            return load_workbook(file_like_object)
        except Exception as e:
            logging.info(f"****wxy: openpyxl load error: {e}, try pandas instead")
            try:
                file_like_object.seek(0)
                df = pd.read_excel(file_like_object)
                return RAGFlowExcelParser._dataframe_to_workbook(df)
            except Exception as e_pandas:
                raise Exception(f"****wxy: pandas.read_excel error: {e_pandas}, original openpyxl error: {e}")

    @staticmethod
    def _dataframe_to_workbook(df):
        wb = Workbook()
        ws = wb.active
        ws.title = "Data"

        for col_num, column_name in enumerate(df.columns, 1):
            ws.cell(row=1, column=col_num, value=column_name)

        for row_num, row in enumerate(df.values, 2):
            for col_num, value in enumerate(row, 1):
                ws.cell(row=row_num, column=col_num, value=value)

        return wb

    def html(self, fnm, chunk_rows=256):
        file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
        wb = RAGFlowExcelParser._load_excel_to_workbook(file_like_object)
        tb_chunks = []
        for sheetname in wb.sheetnames:
            ws = wb[sheetname]
            rows = list(ws.rows)
            if not rows:
                continue

            tb_rows_0 = "<tr>"
            for t in list(rows[0]):
                tb_rows_0 += f"<th>{t.value}</th>"
            tb_rows_0 += "</tr>"

            for chunk_i in range((len(rows) - 1) // chunk_rows + 1):
                tb = ""
                tb += f"<table><caption>{sheetname}</caption>"
                tb += tb_rows_0
                for r in list(
                    rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
                ):
                    tb += "<tr>"
                    for i, c in enumerate(r):
                        if c.value is None:
                            tb += "<td></td>"
                        else:
                            tb += f"<td>{c.value}</td>"
                    tb += "</tr>"
                tb += "</table>\n"
                tb_chunks.append(tb)

        return tb_chunks

    def __call__(self, fnm):
        file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
        wb = RAGFlowExcelParser._load_excel_to_workbook(file_like_object)

        res = []
        for sheetname in wb.sheetnames:
            ws = wb[sheetname]
            rows = list(ws.rows)
            if not rows:
                continue
            ti = list(rows[0])
            for r in list(rows[1:]):
                fields = []
                for i, c in enumerate(r):
                    if not c.value:
                        continue
                    t = str(ti[i].value) if i < len(ti) else ""
                    t += (":" if t else "") + str(c.value)
                    fields.append(t)
                line = "; ".join(fields)
                if sheetname.lower().find("sheet") < 0:
                    line += " ——" + sheetname
                res.append(line)
        return res

    @staticmethod
    def row_number(fnm, binary):
        if fnm.split(".")[-1].lower().find("xls") >= 0:
            wb = RAGFlowExcelParser._load_excel_to_workbook(BytesIO(binary))
            total = 0
            for sheetname in wb.sheetnames:
                ws = wb[sheetname]
                total += len(list(ws.rows))
            return total

        if fnm.split(".")[-1].lower() in ["csv", "txt"]:
            encoding = find_codec(binary)
            txt = binary.decode(encoding, errors="ignore")
            return len(txt.split("\n"))


if __name__ == "__main__":
    psr = RAGFlowExcelParser()
    psr(sys.argv[1])