File size: 5,812 Bytes
b9fe2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#
#  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import json
import re
import csv
from copy import deepcopy

from deepdoc.parser.utils import get_text
from rag.app.qa import Excel
from rag.nlp import rag_tokenizer


def beAdoc(d, q, a, eng, row_num=-1):
    d["content_with_weight"] = q
    d["content_ltks"] = rag_tokenizer.tokenize(q)
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
    d["tag_kwd"] = [t.strip() for t in a.split(",") if t.strip()]
    if row_num >= 0:
        d["top_int"] = [row_num]
    return d


def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
    """
        Excel and csv(txt) format files are supported.
        If the file is in excel format, there should be 2 column content and tags without header.
        And content column is ahead of tags column.
        And it's O.K if it has multiple sheets as long as the columns are rightly composed.

        If it's in csv format, it should be UTF-8 encoded. Use TAB as delimiter to separate content and tags.

        All the deformed lines will be ignored.
        Every pair will be treated as a chunk.
    """
    eng = lang.lower() == "english"
    res = []
    doc = {
        "docnm_kwd": filename,
        "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        excel_parser = Excel()
        for ii, (q, a) in enumerate(excel_parser(filename, binary, callback)):
            res.append(beAdoc(deepcopy(doc), q, a, eng, ii))
        return res

    elif re.search(r"\.(txt)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = get_text(filename, binary)
        lines = txt.split("\n")
        comma, tab = 0, 0
        for line in lines:
            if len(line.split(",")) == 2:
                comma += 1
            if len(line.split("\t")) == 2:
                tab += 1
        delimiter = "\t" if tab >= comma else ","

        fails = []
        content = ""
        i = 0
        while i < len(lines):
            arr = lines[i].split(delimiter)
            if len(arr) != 2:
                content += "\n" + lines[i]
            elif len(arr) == 2:
                content += "\n" + arr[0]
                res.append(beAdoc(deepcopy(doc), content, arr[1], eng, i))
                content = ""
            i += 1
            if len(res) % 999 == 0:
                callback(len(res) * 0.6 / len(lines), ("Extract TAG: {}".format(len(res)) + (
                    f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))

        callback(0.6, ("Extract TAG: {}".format(len(res)) + (
            f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))

        return res

    elif re.search(r"\.(csv)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = get_text(filename, binary)
        lines = txt.split("\n")

        fails = []
        content = ""
        res = []
        reader = csv.reader(lines)

        for i, row in enumerate(reader):
            row = [r.strip() for r in row if r.strip()]
            if len(row) != 2:
                content += "\n" + lines[i]
            elif len(row) == 2:
                content += "\n" + row[0]
                res.append(beAdoc(deepcopy(doc), content, row[1], eng, i))
                content = ""
            if len(res) % 999 == 0:
                callback(len(res) * 0.6 / len(lines), ("Extract Tags: {}".format(len(res)) + (
                    f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))

        callback(0.6, ("Extract TAG : {}".format(len(res)) + (
            f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
        return res

    raise NotImplementedError(
        "Excel, csv(txt) format files are supported.")


def label_question(question, kbs):
    from api.db.services.knowledgebase_service import KnowledgebaseService
    from graphrag.utils import get_tags_from_cache, set_tags_to_cache
    from api import settings
    tags = None
    tag_kb_ids = []
    for kb in kbs:
        if kb.parser_config.get("tag_kb_ids"):
            tag_kb_ids.extend(kb.parser_config["tag_kb_ids"])
    if tag_kb_ids:
        all_tags = get_tags_from_cache(tag_kb_ids)
        if not all_tags:
            all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
            set_tags_to_cache(all_tags, tag_kb_ids)
        else:
            all_tags = json.loads(all_tags)
        tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
        tags = settings.retrievaler.tag_query(question,
                                              list(set([kb.tenant_id for kb in tag_kbs])),
                                              tag_kb_ids,
                                              all_tags,
                                              kb.parser_config.get("topn_tags", 3)
                                              )
    return tags


if __name__ == "__main__":
    import sys

    def dummy(prog=None, msg=""):
        pass
    chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)