File size: 12,604 Bytes
b9fe2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import os
import re
from collections import defaultdict
import json_repair
from api.db import LLMType
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api.utils.file_utils import get_project_base_directory
from rag.settings import TAG_FLD
from rag.utils import num_tokens_from_string, encoder
def chunks_format(reference):
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
return [{
"id": get_value(chunk, "chunk_id", "id"),
"content": get_value(chunk, "content", "content_with_weight"),
"document_id": get_value(chunk, "doc_id", "document_id"),
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
"image_id": get_value(chunk, "image_id", "img_id"),
"positions": get_value(chunk, "positions", "position_int"),
"url": chunk.get("url")
} for chunk in reference.get("chunks", [])]
def llm_id2llm_type(llm_id):
llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
fnm = os.path.join(get_project_base_directory(), "conf")
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
for llm_factory in llm_factories["factory_llm_infos"]:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].strip(",")[-1]
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append(
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg if m["role"] == "system"]
if len(msg) > 1:
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0]["content"])
ll2 = num_tokens_from_string(msg_[-1]["content"])
if ll / (ll + ll2) > 0.8:
m = msg_[0]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[0]["content"] = m
return max_length, msg
m = msg_[-1]["content"]
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
msg[-1]["content"] = m
return max_length, msg
def kb_prompt(kbinfos, max_tokens):
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
used_token_count = 0
chunks_num = 0
for i, c in enumerate(knowledges):
used_token_count += num_tokens_from_string(c)
chunks_num += 1
if max_tokens * 0.97 < used_token_count:
knowledges = knowledges[:i]
logging.warning(f"Not all the retrieval into prompt: {i+1}/{len(knowledges)}")
break
docs = DocumentService.get_by_ids([ck["doc_id"] for ck in kbinfos["chunks"][:chunks_num]])
docs = {d.id: d.meta_fields for d in docs}
doc2chunks = defaultdict(lambda: {"chunks": [], "meta": []})
for i, ck in enumerate(kbinfos["chunks"][:chunks_num]):
doc2chunks[ck["docnm_kwd"]]["chunks"].append((f"URL: {ck['url']}\n" if "url" in ck else "") + f"ID: {i}\n" + ck["content_with_weight"])
doc2chunks[ck["docnm_kwd"]]["meta"] = docs.get(ck["doc_id"], {})
knowledges = []
for nm, cks_meta in doc2chunks.items():
txt = f"\nDocument: {nm} \n"
for k, v in cks_meta["meta"].items():
txt += f"{k}: {v}\n"
txt += "Relevant fragments as following:\n"
for i, chunk in enumerate(cks_meta["chunks"], 1):
txt += f"{chunk}\n"
knowledges.append(txt)
return knowledges
def citation_prompt():
return """
# Citation requirements:
- Inserts CITATIONS in format '##i$$ ##j$$' where i,j are the ID of the content you are citing and encapsulated with '##' and '$$'.
- Inserts the CITATION symbols at the end of a sentence, AND NO MORE than 4 citations.
- DO NOT insert CITATION in the answer if the content is not from retrieved chunks.
--- Example START ---
<SYSTEM>: Here is the knowledge base:
Document: Elon Musk Breaks Silence on Crypto, Warns Against Dogecoin ...
URL: https://blockworks.co/news/elon-musk-crypto-dogecoin
ID: 0
The Tesla co-founder advised against going all-in on dogecoin, but Elon Musk said it’s still his favorite crypto...
Document: Elon Musk's Dogecoin tweet sparks social media frenzy
ID: 1
Musk said he is 'willing to serve' D.O.G.E. – shorthand for Dogecoin.
Document: Causal effect of Elon Musk tweets on Dogecoin price
ID: 2
If you think of Dogecoin — the cryptocurrency based on a meme — you can’t help but also think of Elon Musk...
Document: Elon Musk's Tweet Ignites Dogecoin's Future In Public Services
ID: 3
The market is heating up after Elon Musk's announcement about Dogecoin. Is this a new era for crypto?...
The above is the knowledge base.
<USER>: What's the Elon's view on dogecoin?
<ASSISTANT>: Musk has consistently expressed his fondness for Dogecoin, often citing its humor and the inclusion of dogs in its branding. He has referred to it as his favorite cryptocurrency ##0$$ ##1$$.
Recently, Musk has hinted at potential future roles for Dogecoin. His tweets have sparked speculation about Dogecoin's potential integration into public services ##3$$.
Overall, while Musk enjoys Dogecoin and often promotes it, he also warns against over-investing in it, reflecting both his personal amusement and caution regarding its speculative nature.
--- Example END ---
"""
def keyword_extraction(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: extract the most important keywords/phrases of a given piece of text content.
Requirements:
- Summarize the text content, and give top {topn} important keywords/phrases.
- The keywords MUST be in language of the given piece of text content.
- The keywords are delimited by ENGLISH COMMA.
- Keywords ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def question_proposal(chat_mdl, content, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: propose {topn} questions about a given piece of text content.
Requirements:
- Understand and summarize the text content, and propose top {topn} important questions.
- The questions SHOULD NOT have overlapping meanings.
- The questions SHOULD cover the main content of the text as much as possible.
- The questions MUST be in language of the given piece of text content.
- One question per line.
- Question ONLY in output.
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def full_question(tenant_id, llm_id, messages, language=None):
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
conv = []
for m in messages:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conv = "\n".join(conv)
today = datetime.date.today().isoformat()
yesterday = (datetime.date.today() - datetime.timedelta(days=1)).isoformat()
tomorrow = (datetime.date.today() + datetime.timedelta(days=1)).isoformat()
prompt = f"""
Role: A helpful assistant
Task and steps:
1. Generate a full user question that would follow the conversation.
2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
Requirements & Restrictions:
- If the user's latest question is completely, don't do anything, just return the original question.
- DON'T generate anything except a refined question."""
if language:
prompt += f"""
- Text generated MUST be in {language}."""
else:
prompt += """
- Text generated MUST be in the same language of the original user's question.
"""
prompt += f"""
######################
-Examples-
######################
# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?
------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT: Fred Trump.
USER: And his mother?
ASSISTANT: Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
------------
# Example 3
## Conversation
USER: What's the weather today in London?
ASSISTANT: Cloudy.
USER: What's about tomorrow in Rochester?
###############
Output: What's the weather in Rochester on {tomorrow}?
######################
# Real Data
## Conversation
{conv}
###############
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
prompt = f"""
Role: You're a text analyzer.
Task: Tag (put on some labels) to a given piece of text content based on the examples and the entire tag set.
Steps::
- Comprehend the tag/label set.
- Comprehend examples which all consist of both text content and assigned tags with relevance score in format of JSON.
- Summarize the text content, and tag it with top {topn} most relevant tags from the set of tag/label and the corresponding relevance score.
Requirements
- The tags MUST be from the tag set.
- The output MUST be in JSON format only, the key is tag and the value is its relevance score.
- The relevance score must be range from 1 to 10.
- Keywords ONLY in output.
# TAG SET
{", ".join(all_tags)}
"""
for i, ex in enumerate(examples):
prompt += """
# Examples {}
### Text Content
{}
Output:
{}
""".format(i, ex["content"], json.dumps(ex[TAG_FLD], indent=2, ensure_ascii=False))
prompt += f"""
# Real Data
### Text Content
{content}
"""
msg = [
{"role": "system", "content": prompt},
{"role": "user", "content": "Output: "}
]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.5})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
if kwd.find("**ERROR**") >= 0:
raise Exception(kwd)
try:
return json_repair.loads(kwd)
except json_repair.JSONDecodeError:
try:
result = kwd.replace(prompt[:-1], '').replace('user', '').replace('model', '').strip()
result = '{' + result.split('{')[1].split('}')[0] + '}'
return json_repair.loads(result)
except Exception as e:
logging.exception(f"JSON parsing error: {result} -> {e}")
raise e
|